Leveraging existing capacities - flood relief following Cyclone Idai (2019), Malawi

Donald JC Robertson*[1] and Muthi Nhlema^[2]

^[1] Hydro Nation Scholar and, Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, G1 1XJ, *email: donald.j.robertson@strath.ac.uk ^[2] BASEflow Malawi, Galaxy House, Blantyre, Malawi, muthi@baseflowmw.org

1. Before the flood

- 2017: a **national water point mapping exercise** is commissioned in Malawi and supported by the Scottish Government (Table 1).
- Mapping programme involved **collaboration** between government, NGO, private sector, and academic partners.
- Programme utilised mWater, a free-to-use online platform, to collect, analyse, manage and share data creating a **Management Information System (MIS)**.
- Training and capacity building in use of the MIS: 354 government enumerators are trained in data collection. Database management & governance systems in place.

Table 1: A summary table of the key mapping outputs from the national water point mapping exercise in Malawi. Data was collected on all the site types listed across Malawi

Key Mapping Outputs	
Туре	Number mapped
Water Points 124 702	
Sanitation Points	303 495
Waste Sites	10 419

2. During the flood

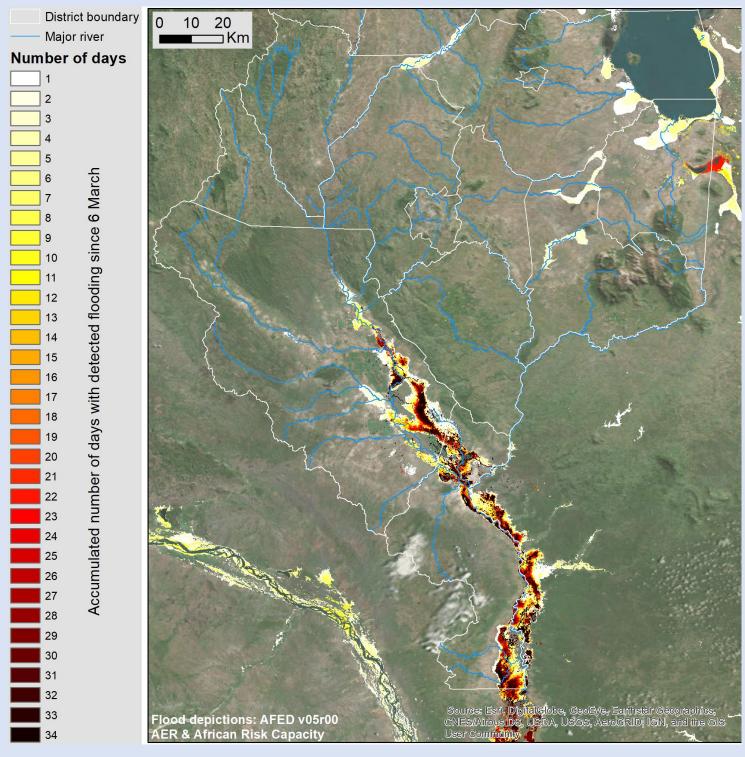


Figure 1 (above): A map of southern Malawi showing the accumulated number of days with detected flooding following the impact of Cyclone Idai in March 2019.²

Table 2 (below): A triage table developed to help identify and target priority water points for post-flood interventions. Triage was developed on the basis of existing data and data collection capacities.

Level	Priority	Description
5	Very High	Water point has tested positive for biological contamination
4	High	Informants report *water quality issues and/or **critical damage
		to water point infrastructure and water point currently serves
		over 300 users
3	Medium	Informants report *water quality issues and/or **critical damage
		to water point infrastructure and water point currently serves
		under 300 users
2	Low	Water point was <i>likely submerged</i> during flooding events
1	Very Low	Water point issues are not an immediate risk to human health

^{*}Water quality issues: reports of bad water taste, colour, smell or salinity levels

** Critical damage to water point: defined as visible damage to civil works, damage to the
lifting device or severe erosion of the soil around the civil works

2.1 Flood event

- Cyclone Idai makes landfall in March 2019 inundating large parts of rural, southern Malawi (figure 1). Widespread damage is caused across the southern region, internally displacing nearly 90,000 people¹
- Government of Malawi establishes 'WASH Cluster' to coordinate international relief efforts.
- Safeguarding drinking water supplies considered a top priority. Damage and contamination to shallow groundwater (<50m) borehole fed handpumps a major concern.

2.2 Capacity mobilisation

- International financial aid begins to flow to the region. With support from Scottish Government and USAID a handpump repair and rehabilitation project was initiated.
- Existing data, skill, and coordination capacity is mobilised under the lead of 'WASH Cluster'.
- A **triage system** (table 2), based on existing data and data-gathering capacity, is developed to help target relief.
 - Water point database overlain on flood extent shapefiles likely submerged
 - Community-level survey developed and enumerators deployed to local communities across southern region. Information is quickly (days) gathered on; qualitative water quality issues, critical damage, and biological contamination.
 - Results are shared in real-time through 'live' MIS to WASH Cluster and all stakeholders involved in relief efforts.
 - WASH cluster coordinates teams from BASEflow, Strathclyde and local mechanics to instigate repair and rehabilitation work in Mulanje
 District, with post-intervention assessments (3 and 6 month intervals)

3. After the flood – results & lessons

- 1. Drinking water access safeguarded for ~184,000 people
- 2. Functionality rates of handpump-fitted boreholes targeted for rehabilitation improved from 8% to 91% by the 6-month post-intervention visit.
- **3. Existing data, systems, and skills** were successfully repurposed to aid the flood response efforts.
- 4. Sharing data and data systems was key to early coordination.
- 5. Community experience and knowledge of the flooding event was successfully integrated with existing data to help direct relief resources
- Lessons: (a) database-driven initiatives should consider multiple uses and demands at the outset (b) community-level experience of the flooding event was valuable (c) existing capacity and actionable data was sufficient to guide effective response

