Linking small-scale hydrological flow paths, connectivity
and microbiological transport to protect remote private
water supplies

1. Introduction

Process-based understanding of how hydrological connectivity and flow paths
facilitate connection of sources of faecal contamination, together with
development of models with robust linkages between hydrological and
microbiological processes, is necessary to understand and mitigate faecal
contamination risk'? (Fig 1).
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Fig 1: Processes contributing to the dynamics and controls of faecal contamination whose understanding is required for assessment, modelling and mitigation.

Aim: Use the novel integration of hydrological, isotopic and microbiological
data within modelling frameworks to better understand and simulate the
dynamics and controls of faecal contamination in rurally-influenced areas.

This aim is addressed by the following four work packages:

1. Using spatial-stream network models (SSNMs) and long-term data to
understand and predict dynamics of faecal contamination in a mixed land-
use catchment.

2. Integrating hydrological, isotopic and microbiological data within
modelling frameworks to develop process-based understanding of faecal
contamination in a mixed land-use headwater catchment.

3. Understanding sources of faecal contamination in an upland stream:

earning from application of a simple process-based tracer-aided

nydrological model.

4. Investigating changes to faecal contamination under environmental
change and mitigation scenarios using a process-based tracer-aided
model.
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* [ntensive data collection from Tulloch «
Burn completed Jun-Sept 2017 (Fig 5).
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