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Background 
² Global increase in hydropower development.  
²  Fragmentation of riverine ecosystems resulting from 

this impacts the viability of fish populations, e.g. [1].  
²  Connectivity metrics and graph-theoretic approaches 

prove to be efficient to map impacts and guide river 
restoration efforts, e.g. [2,3,4].  

² We focus on Atlantic Salmon (Salmo salar) in Scottish 
rivers, as impact of hydropower constructions (HCs) 
depends not only on the HC’s design but also on 
spat ial scale, spat io-temporal dynamics in 
hydrological connectivity and habitat requirements 
and salmon life stage (Fig. 1).  

²  How is connectivity affected by HCs? 
²  How do HCs influence sustainability of salmonid 

habitat? 
²  Do we have tools for site selection to optimise 

hydropower generation and habitat maintenance? 

Research questions 
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Preliminary results  
²  Impact on connectivity depends on location (Fig. 5a). 
² multiple smaller HCs may potentially have a lower impact than a single larger 

HC (Fig. 5a). 
²  There is a clear relationship between habitat and connectivity (Fig 5b). 
²  Losing less but more suitable habitat potentially has a disproportionally large 

impact (Fig. 5b). 

bas.buddendorf@abdn.ac.uk	
  	
  
01224	
  27	
  3696	
  
School	
  of	
  Geosciences	
  
University	
  of	
  Aberdeen	
  
Aberdeen,	
  	
  AB24	
  3FX	
  
	
  
www.abdn.ac.uk/nri	
  
hHp://www.crew.ac.uk/hydro-­‐naLon	
  

Further work  

²  Include hydrological/hydraulic/biological data in connectivity metrics. 
²  Adjust the weighting based on spatial patterns of habitat distribution to 

investigate if in-stream spatial distribution of habitat types may have different 
relationships with connectivity [7].  

²  Trends may be different at larger scales [8]. We will apply and ground-truth 
approach in larger catchments, allowing us to cover scales from 30-3200km2. 

²  Investigate the impact of hydrological change on habitat suitability using 
hydrological models [9] and hydraulic habitat modelling. 

Methods  
² GIS approach to obtain a first order approximation of 

suitable habitat in small catchment in the Cairngorms, 
Scotland (Fig. 2 and 3). 

²  Perform computer simulations to study the effect of 
obstructions on connectivity using the HCIU 
connectivity metric [6] (Fig. 3). 

²  Three impact scenarios versus a natural situation and 
apply a weighting factor for spawning habitat (Fig.4).  
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Fig. 3: Workflow. The lines in the bottom panel represent different passability values for obstructions. 
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Fig. 1: a) Flow requirements of Atlantic salmon are different for different 
life stages. This strongly links to dynamics in spatio-temporal 
connectivity; which can be altered in different ways depending on the 
design of hydropower constructions (b, c). Hydrographs adapted from [5]. 
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Fig. 5: a) largest impact in scenario (1) and lowest impact in scenario (2). b) adding dams in 
sequence shows that there is a relationship between habitat and connectivity, the largest impact is 
seen in the smallest tributaries that harbours the largest amount of habitat. 
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Fig. 4: We consider three scenarios: 1) one hydropower construction at the outlet; 2) one hydropower 
construction on the main stem; 3) three hydropower constructions on tributaries. We apply a weighting 
factor for spawning habitat, which reduces the total amount of available habitat. 
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Fig. 2:Location of the Girnock Burn catchment (30km2), in the Cairngorms. 


