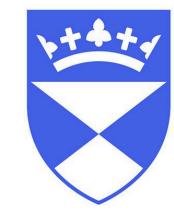
Scotland's water reuse potential: barriers and opportunities

Hubert Cousin¹, Dr Dominic Duckett², Dr Mads Troldborg³, & Prof. Sarah Hendry²

^{1.} University of Dundee, Dundee, UK ^{2.} Glasgow Caledonian University, Glasgow, UK ^{3.} James Hutton Institute, Dundee, UK

Email: 2397857@dundee.ac.uk


https://www.hydronationscholars.scot/

Hydro Nation Scholars Programme

Acknowledgements

This project is supported by the Hydro Nation Scholar Programme. Special thanks to my supervisors.

1 - Research

1.1 - Background

Current and future challenges

- Future increase in drought risk
- Rising domestic water consumption and some water consumptive sectors economically growing
- Key sectors at risk due to changing water

2 - Murcia: European leader in water reuse

- 2.1 Methodology
- Prior review of literature in English and Spanish.
- Nine semi-structured interviews with eleven

- 2.2 Results and discussion
- Some aspects can be generalised, as they are dependent on the concept of water reuse but not on the context.
- A pilot study in Scotland would be essential to assess: the investment and the cost of treatment and supply, the level of social acceptance and

availability

Non-conventional water usage

- High domestic and industrial share
- Low agricultural share due to low level of irrigation

Representation and perceptions

- Less research on scarcity
- Scarcity-related risks are poorly perceived by the public

How to foster the water reuse potential in Scotland?

- Drivers, benefits and barriers to water reuse and their relevance in Scotland —> Literature review
- Discussion of the water reuse potential through the case of Murcia —> Case study (Section 2)
- Opportunity mapping for water reuse —> GIS (Section 3)

stakeholders (see Table

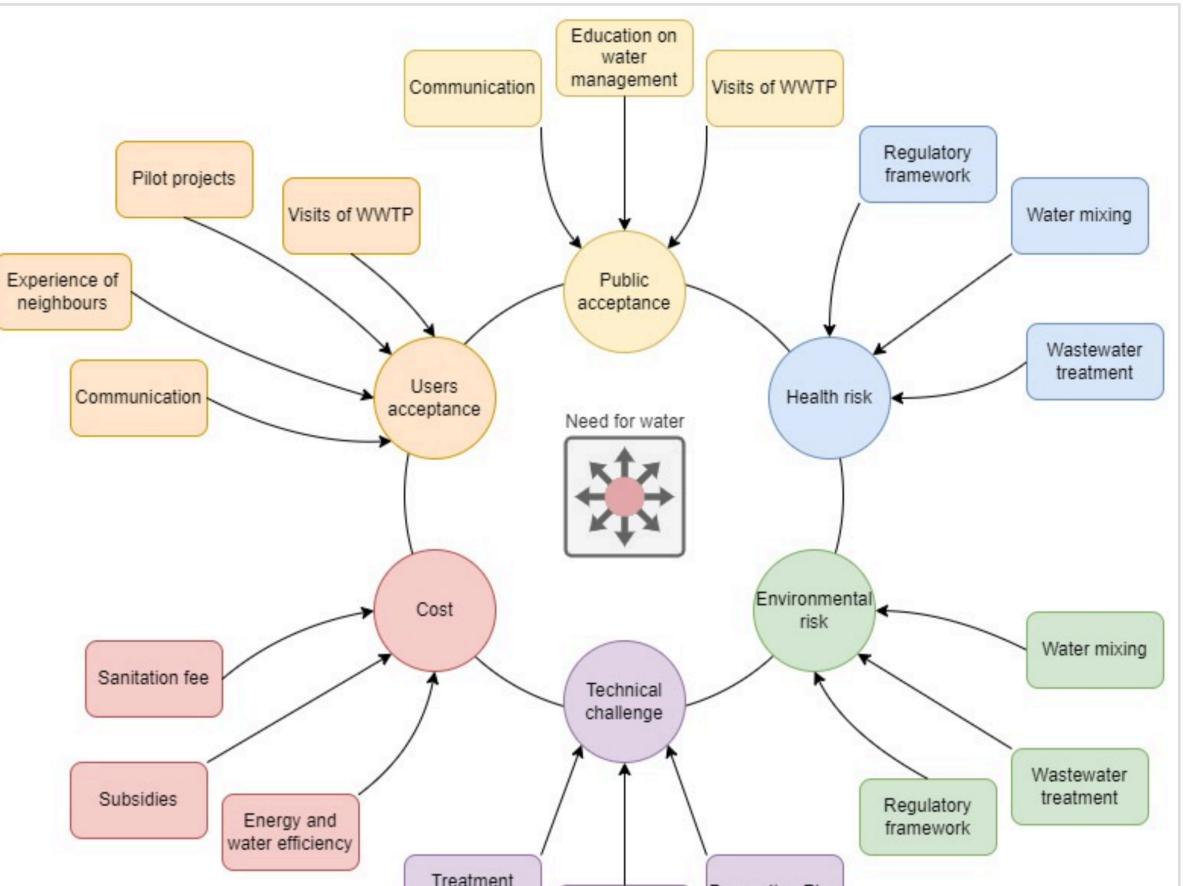
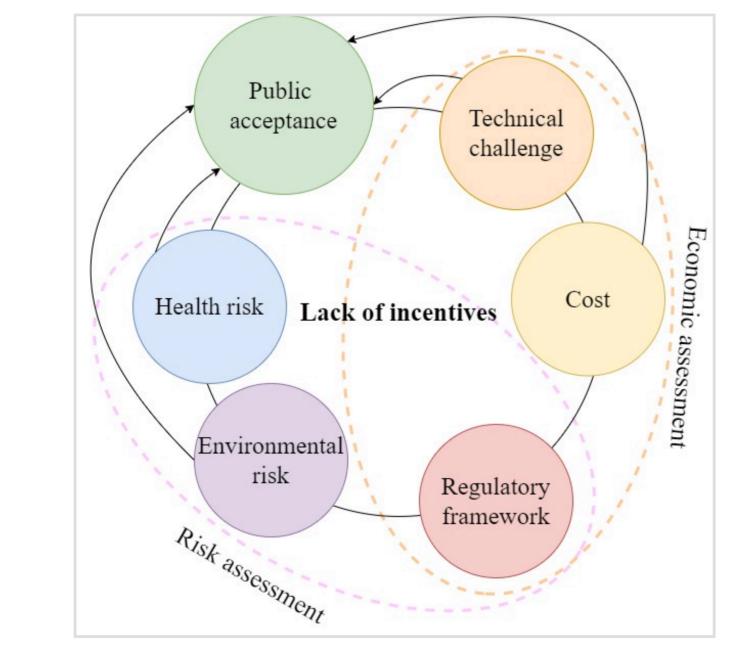

- Figure 2: Area of study
- Analysis of stakeholder's perceptions of the barriers, practical solutions and challenges associated with reclaimed water.

Table 1: Stakeholders' information


Organisation	Department	
University of Murcia	Applied Economics	
Irrigation Community of Campo de	NA	
Cartagena		
Region of Murcia	Water Department	
Murcian Institue for Agricultural	Sustainability and	
and Environmental Research and	Horticultural	
Development	Quality	
Entity of Sanitation and	Operation	
Purification of Wastewater		
Region of Murcia	Water Department	
Polytechnic University of	Agricultural	
Cartagena	Engineering	
Higher Council for Scientific	Food Science and	
Research	Technology	
Centre for Soil Science and Applied	Irrigation	
Biology of the Segura		
Region of Murcia	Water Department	
Hydrographic Confederation of	Hydrological	
Segura	Planning	

the perceptions associated with this resource.

 "New solutions come with new problems." Other solutions must be prioritised before reuse: higher water efficiency, higher level of information and behavioural change.

- Public (or community) perceptions over water reuse —> Workshop(s) or focus groups
- Discussion of key water reuse policy strategies by stakeholders —> Workshop(s)
 - 1.2 Duckett et al., 2024 ¹
- Call for new drivers to water reuse: climate justice, water justice and circular economy.
- Call for a Yum factor, a positive factor expressed by the feeling of being environmentally responsible, must be triggered in contrast with the Yuck factor.

technolgies	Planning and execution	Depuration Plan	

Figure 3: Prior barriers to reclaimed water in Murcia and their solutions

3 - Mapping of centralised and decentralised reuse

3.1 - Study area and users selection

- East of Scotland as it presents characteristics detailed in Section 1.1.
- 1,036 potential users identified fit for reuse
- Two SEPA datasets were assessed to identify the users fit for reuse with the most
 Agricult
 Industrie

tential. ²³	Figu	ure 4: Po	tential users
.2 - Centralised a	nd dece	entralis	sed

3.3 - Mapping under different scenarios

- Different scenarios are established based on existing or potential policy strategies to overcome the barriers to water reuse in Scotland.
- The aim is to identify opportunities for reuse and potential competing objectives by comparing different scenarios.

Table 3: Important criteria under different scenarios

	Scenarios				
Criteria	High level of cost-efficiency	Low level of health and environment risk	Low energy requirements and GHG emissions	High level of preservation of the water environment	High level of acceptance is prioritised
Distance from treatment facility	√		\checkmark		

Figure 1: Interlocking barriers to water reuse

Sources

1. Duckett, D., Troldborg, M., Hendry, S., Cousin, H. (2024) 'Making waves: Promoting municipal water reuse without a prevailing scarcity driver', Water Research (Oxford), 249, pp. 120965-120965. https://doi.org/10.1016/j.watres.2023.120965.

2. SEPA. (2024) 'SEPA Authorised sites in Scotland in British National Grid'. https:// map.sepa.org.uk/atom/SEPA_Authorised_sites.atom

3. SEPA. (2024) 'ALL SCOTLAND - Abstractions (F0197446)'. https://www2.sepa.org.uk/ disclosurelog/#

4. Hama, A.R., Al-Suhili, R.H. and Ghafour, Z.J. (2019) 'A multi-criteria GIS model for suitability analysis of locations of decentralized wastewater treatment units: case study in Sulaimania, Iraq', *Heliyon*, 5(3), pp. e01355–e01355. https://doi.org/10.1016/j.heliyon.2019.e01355
5. European Environment Agency. (2021) 'Urban Wastewater Treatment Directive, Waterbase 2017-2018'. https://sdi.eea.europa.eu/data/dbbccc77-ec41-4b19-8ec5-093bba1ba7a8? dir=undefined&path=%2FWaterbase_UWWTD_v8_csv&openfile=6224518
6. Scottish Government. (2024) 'Vacant and Derelict Land - Scotland (SVDLS). https://data.spatialhub.scot/dataset/vacant_and_derelict_land-is

Both are assessed as distance from the treatment facility is key.
Prior selection for decentralised sites based on Hama et al. (2019). ⁴
The analysis is mainly based on two datasets. ^{5 6} Facilities are then classified based on three criteria.

Table 2: Criteria for the classification of treatment facilities

Criteria			
Centralised Decentralised			
Treatment capacity	Total users in a close distance		
Treatment available	Size of the site		
Type of discharge	Local density of population		

facility					
Elevation difference with treatment facility	V		√		
Source of supply		\checkmark	\checkmark	\checkmark	√
Capacity to pay					V
Vulnerability to water scarcity				\checkmark	V
Human exposure to contaminants		V			V
Water demand	\checkmark			\checkmark	
Variation in water demand	\checkmark			\checkmark	
Reclaimed water quality	\checkmark	\checkmark	√		\checkmark