Linking small-scale hydrological flow paths, connectivity and microbiological transport to protect remote private water supplies

Private Water Supplies

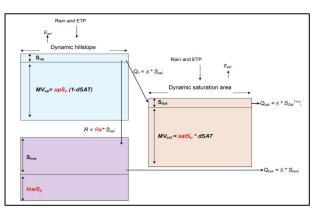
PARAMETER	NO. TYPE A SAMPLES	TYPE A % SAMPLES FAILED
All Parameters	44,812	6.03
Coliform Bacteria	2,266	24.23
E. coli	2,264	13.38
Colour	2,126	17.97
Turbidity	2,217	1.85
Hydrogen ion (pH)	2,228	16.79
Aluminium	816	2.08
Iron	1,012	13.44
Manganese	891	7.30
Lead (10)	1,001	9.89
	NO TYPE D	TVDE D 0/
	NO. TYPE B	TYPE B %
PARAMETER	SAMPLES	SAMPLES FAILED
PARAMETER All Parameters		
	SAMPLES	SAMPLES FAILED
All Parameters	SAMPLES 13,971	SAMPLES FAILED 12.14
All Parameters Coliform Bacteria	\$AMPLES 13,971 1,127	12.14 43.12
All Parameters Coliform Bacteria E. coli	\$AMPLES 13,971 1,127 1,128	12.14 43.12 21.63
All Parameters Coliform Bacteria E. coli Colour	\$AMPLES 13,971 1,127 1,128 220	12.14 43.12 21.63 16.82
All Parameters Coliform Bacteria E. coli Colour Turbidity	\$AMPLES 13,971 1,127 1,128 220 961	12.14 43.12 21.63 16.82 5.20
All Parameters Coliform Bacteria E. coli Colour Turbidity Hydrogen ion (pH)	\$AMPLES 13,971 1,127 1,128 220 961 1,034	12.14 43.12 21.63 16.82 5.20 26.79
All Parameters Coliform Bacteria E. coli Colour Turbidity Hydrogen ion (pH) Aluminium	\$AMPLES 13,971 1,127 1,128 220 961 1,034 122	12.14 43.12 21.63 16.82 5.20 26.79 12.30

188,000

People in Scotland rely on private water supplies (PWS)

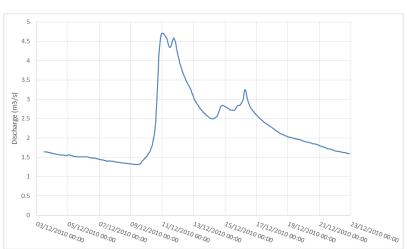
Drinking Water Quality in Scotland,

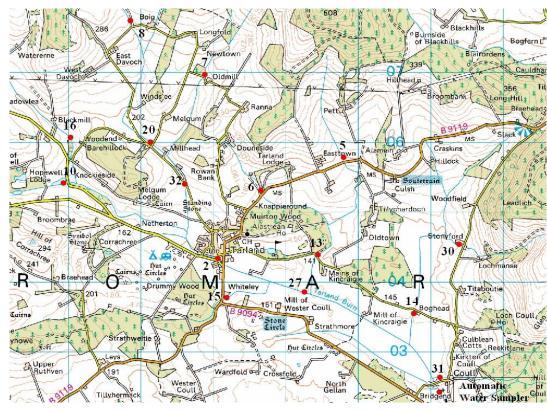
2014


Aim

Combine <u>geochemical tracer</u> methods, <u>microbiological pollutant</u> monitoring and <u>numerical modelling</u> at the plot to hillslope scale" to:

- Investigate how different <u>hydrological source areas</u> become <u>connected</u> to PWS under varying hydrological conditions, and how <u>changes in connectivity</u> affect the potential <u>mobilisation and</u> <u>transport of faecal pollutants from different reservoirs</u>.
- 2. Investigate how <u>faecal pollutant transfer dynamics</u> may be changed under different <u>climatic and mitigation scenarios</u>

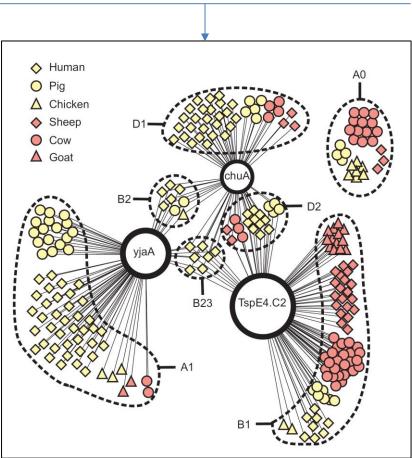




WP1: Long-term spatial and temporal patterns of faecal contamination "hot spots"

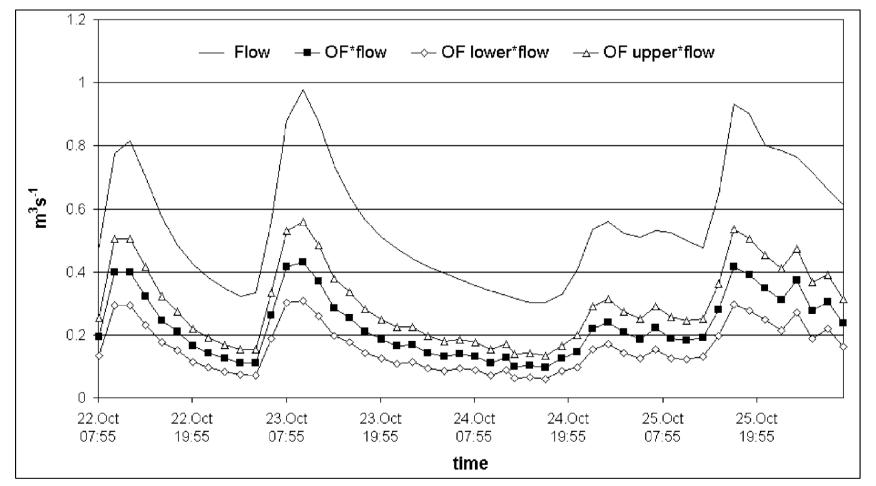
Research Questions:

What is the <u>long-term spatial distribution</u> of <u>"hot-spots"</u> of faecal contamination risk and what are the <u>dominant landscape controls</u> on this distribution?


What is the short-term variability in "hot-spot" spatial distribution, and what are the dominant controls?

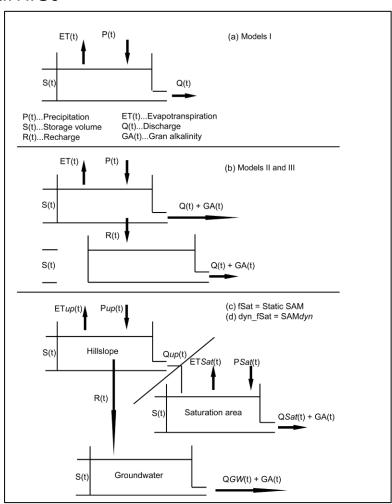
WP2: Combining empirical and modelling approaches to investigate faecal pollutant transfer dynamics

1. Under different hydrological conditions, from where are faecal pollutants present in PWS sourced?



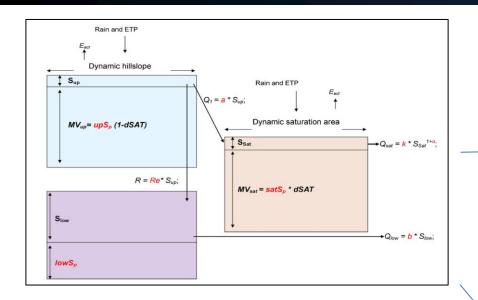
WP2: Combining empirical and modelling approaches to investigate faecal pollutant transfer dynamics

2. What are the hydrological flow pathways responsible for connecting the sources of pollutant to the PWS?



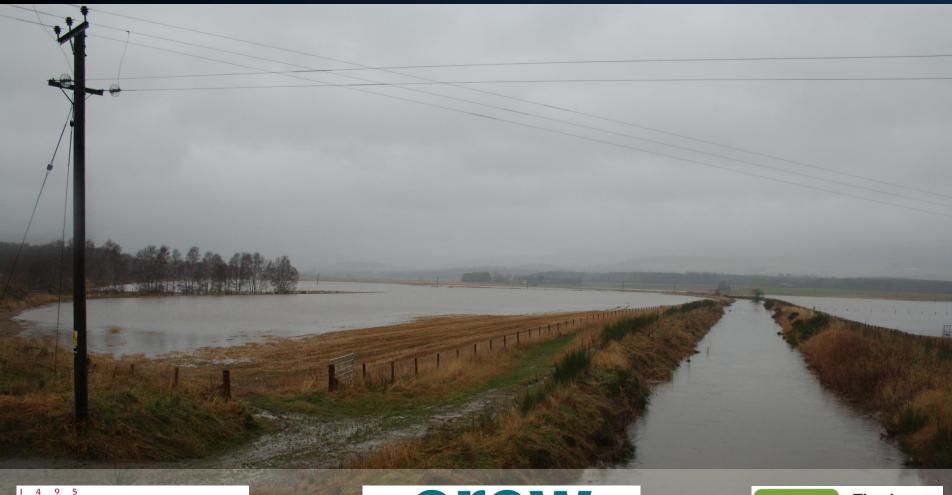
WP2: Combining empirical and modelling approaches to investigate faecal pollutant transfer dynamics

3. Development of numerical model based on empirically-derived faecal pollutant transfer dynamics



Birkel et al. (2010)

WP3: Scenario-based modelling of faecal contamination risk


Scenarios:

- Climatic
- Mitigation affecting:
 - Hydrological connectivity
 - Livestock access to connected areas
- Farm management practices

Thank You

