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A B S T R A C T   

The new Model for the Agent-based simulation of Faecal Indicator Organisms (MAFIO) is applied to a small 
(0.42 km2) Scottish agricultural catchment to simulate the dynamics of E. coli arising from sheep and cattle 
farming, in order to provide a proof-of-concept. The hydrological environment for MAFIO was simulated by the 
“best” ensemble run of the tracer-aided ecohydrological model EcH2O-iso, obtained through multi-criteria 
calibration to stream discharge (MAE: 1.37 L s� 1) and spatially-distributed stable isotope data (MAE: 
1.14–3.02‰) for the period April–December 2017. MAFIO was then applied for the period June–August for 
which twice-weekly E. coli loads were quantified at up to three sites along the stream. Performance in simulating 
these data suggested the model has skill in capturing the transfer of faecal indicator organisms (FIOs) from 
livestock to streams via the processes of direct deposition, transport in overland flow and seepage from areas of 
degraded soil. Furthermore, its agent-based structure allowed source areas, transfer mechanisms and host ani-
mals contributing FIOs to the stream to be quantified. Such information is likely to have substantial value in the 
context of designing and spatially-targeting mitigation measures against impaired microbial water quality. This 
study also revealed, however, that avenues exist for improving process conceptualisation in MAFIO (e.g. to 
include FIO contributions from wildlife) and highlighted the need to quantitatively assess how uncertainty in the 
spatial extent of surface flow paths in the simulated hydrological environment may affect FIO simulations. 
Despite the consequent status of MAFIO as a research-level model, its encouraging performance in this proof-of- 
concept study suggests the model has significant potential for eventual incorporation into decision support 
frameworks.   

1. Introduction 

A prerequisite to improving impaired microbial water quality in 
agricultural catchments is identification of the sources and transfer 
mechanisms which contribute faecal indicator organisms (FIOs) to 
streams at the sub-field scale where mitigation measures can be imple-
mented (Oliver et al., 2007, 2016; also c.f. Greene et al., 2015; Vinten 
et al., 2017). In a companion paper (Neill et al., 2020), limitations were 

identified in using existing process-based FIO models to understand 
sub-field-scale drivers of in-stream FIO dynamics that emerge at the 
catchment scale. Specifically, the coarse spatial discretisations often 
adopted by such models are inconsistent with the scales at which pro-
cesses affecting FIO fate and transport operate and at which mitigation 
measures can be employed (Rode et al., 2010; Wellen et al., 2015). 
Furthermore, as most FIO models are aggregative (i.e. they simulate 
stores and fluxes of FIOs integrated over spatial units), the ability to 
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account for heterogenity amongst FIOs of different types and to trace 
pathways taken by individual FIOs to streams is limited (c.f. O’Sullivan 
et al., 2012; Reaney, 2008). Finally, most FIO models rely on skill in 
simulating stream discharge to indicate whether catchment hydrological 
functioning is being adequately captured (Cho et al., 2016). However, 
such data do not contain information on the velocities of water through 
a catchment that reflect flow path dynamics and hydrological connec-
tivity, factors to which FIO transport is sensitive (Birkel and Soulsby, 
2015; Wellen et al., 2015). 

Drawing on the potential offered by agent-based models for simu-
lating individuals with heterogenous attributes that can be tracked over 
a simulation, Neill et al. (2020) reported the development of a new 
Model for the Agent-based simulation of Faecal Indicator Organisms 
(MAFIO) as an alternative approach to FIO modelling. The purpose of 
the model is to elucidate the sources and transfer mechanisms contrib-
uting FIOs to streams at the sub-field scale in small (<10 km2) agricul-
tural catchments through simulating and tracking the fate and transport 
of agents representing FIOs (FIO-agents) in a process-based, spatially--
distributed manner. MAFIO consists of six sub-models that allow simu-
lation of the following processes: 1) FIO loading from different livestock, 
including direct deposition in streams; 2) FIO die-off as a function of 
temperature and, for above-ground FIOs, solar radiation; 3) Detachment 
of FIOs from faeces; 4) Surface routing of FIOs accounting for infiltra-
tion, exfiltration and lateral transport in overland flow; 5) Seepage of 
FIOs to streams from areas of degraded soil; 6) Channel routing with 
settling modelled by a distance-decay function for sediment-associated 
FIOs. A further key feature of MAFIO is that the hydrological environ-
ment used to simulate hydrological transfer mechanisms is provided by 
an external model; thus, there is scope for using hydrological models 
which can be robustly evaluated with respect to their consistency with 
internal catchment states and process representation. Full details of the 
model, its operation and parameterisation can be found in the com-
panion paper (Neill et al., 2020). 

Here, MAFIO is applied to simulate the dynamics of E. coli in a small 
agricultural catchment in Scotland arising from sheep and cattle 
farming, in order to provide a proof-of-concept. The following specific 
questions are addressed:  

1. To what extent can MAFIO resolve the main processes driving 
observed dynamics of FIOs? 

2. What potential does MAFIO have for providing processed-based in-
sights into microbial water quality that are relevant for 
management? 

Given the potential of tracer-aided ecohydrological models in 
providing robust simulations of catchment hydrological functioning (see 
Neill et al., 2020), the model EcH2O-iso (Kuppel et al., 2018a) is used to 
generate the hydrological environment for MAFIO following 
multi-criteria calibration to discharge and spatially-distributed isotope 
data. 

2. Study site 

The study site was the Tulloch Burn catchment (0.42 km2; Fig. 1a), a 
sub-catchment of the Tarland Burn (71 km2) which is a tributary of the 
River Dee, NE Scotland. The Dee is a regional water resource, supplying 
>300,000 people with drinking water, and is designated a Special Area 
of Conservation due to the freshwater ecosystem it supports. Higher 
intensities of agriculture in lowland tributaries of the Dee have been 
linked to impaired water quality (Langan et al., 1997). As the most 
upstream tributary draining significant areas of agriculture, the Tarland 
Burn catchment became a research site for assessing diffuse- and 
point-sources of pollution and evaluating best management practices for 
mitigation (Bergfur et al., 2012). The selection of the Tulloch Burn 
catchment for this study was based on work that identified it as a “hot 
spot” for faecal contamination from 11 years of E. coli data (Neill et al., 

2018). 
Longer-term data (2000–2010) from Aboyne meteorological station 

~10 km from the Tulloch shows mean annual precipitation and poten-
tial evapotranspiration for the area to be 828 mm and 521 mm, 
respectively (Dunn et al., 2013). Catchment elevation ranges from 216 
m to 453 m. Brown earths (41%) and humus-iron podzols (34%) are the 
predominant soil-types (Fig. 1b; Soil Survey of Scotland Staff, 2014). 
These are freely-draining soils; consequently, artificial field drainage is 
not necessary in the catchment. There are also limited areas of 
non-calcareous gleys and alluvial soils, with higher elevations domi-
nated by peaty-gleyed podzols (Fig. 1b; Soil Survey of Scotland Staff, 
2014). Approximately 60% of the catchment is agricultural (Fig. 1c). 
During the study, surveys showed that five fields were used for pastoral 
(sheep and cattle) farming (Lower/Mid Pasture [L/R] and Top Pasture) 
and two for arable (Lower/Upper Arable). Apart from Mid-Pasture (R), 
field boundaries extend beyond the Tulloch Burn catchment. Of the 
remaining catchment, 24% is mixed-conifer forest and 16% is heather 
moorland (Fig. 1c). 

To prevent livestock access, parts of the stream are fenced-off from 
fields and surrounded by small riparian areas (Fig. 1d). However, 
stretches of the stream running through Mid Pastures (R) and (L) are 
directly accessible to livestock, with animals able to move between Mid 
Pastures (R) and (L) at a discrete stream crossing-point depending on 
whether a gate is open (Fig. 1c and e). Other discrete crossing-points can 
also connect Lower Pastures (R) and (L), and Lower Pasture (L) and Mid 
Pasture (R), again depending on gates (Fig. 1c). Observation during the 
study found a high degree of soil compaction around all three crossing 
points (DS1-3 in Fig. 1c) due to the concentration of livestock moving 
through these areas. This resulted in the soils being in a state of semi- 
permanent saturation (Fig. 1f); therefore, these areas of degraded soil 
can continually seep water to the stream and may be a potential source 
of chronic faecal contamination (e.g. Bilotta et al., 2007). 

3. Data and methods 

3.1. Hydrometric and isotope data 

Hydrometric monitoring at the Tulloch Burn started in October 
2016. The main study period was between 27/04/17 and 31/12/17. 
Daily average discharge at the catchment outlet and sites T6 and T8 was 
derived by area-scaling discharge measurements made at the outlet of 
the 3.9 km2 Blackmill Burn catchment within which the Tulloch is 
nested. Specifically, near-concurrent discharge (Q) measurements made 
under identical hydroclimatic conditions at five sites within the Black-
mill Burn (including the outlet of the Tulloch) with catchment areas (A) 
of 0.2–3.9 km2 revealed a strong relationship between discharge and 
area (Q ¼ 1.85e-8 � A0.97; Adj. R2: 0.99). Consequently, discharges for 
sites within Tulloch Burn could be derived as: 

QTulX ¼QBM⋅
�

ATulX

ABM

�0:97

(1)  

where QTulX and ATulX are discharge and catchment area for Site X in the 
Tulloch Burn, respectively, and QBM and ABM are discharge and catch-
ment area of the Blackmill Burn, respectively. This was necessary as the 
narrow, poorly-defined channel of the Tulloch prevented a reliable 
stage-discharge rating curve. The Blackmill and Tulloch Burns have 
comparable soils and land use causing them to exhibit similar hydro-
logical responses. Meteorological data (precipitation, temperature, 
relative humidity and windspeed) were collected at 15-mintue intervals 
using an automatic weather station within the catchment (Fig. 1a). 
Short- and long-wave radiation were obtained from ERA-Interim climate 
reanalysis (Dee et al., 2011). These data were amalgamated into daily 
timeseries. 

Isotope samples were analysed for δ2H and δ18O using a Los Gatos 
laser isotope analyser (precision: � 0.4‰ for δ2H and 0.1‰ for δ18O). 
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Given higher relative precision, δ2H was used here. Daily streamwater 
samples at the catchment outlet were collected for isotope analysis using 
an ISCO-3700 autosampler from 27/04/17 (Fig. 1a). A layer of paraffin 
was added to bottles to prevent evaporation. Synoptic grab-sampling for 
isotopes occurred on a twice-monthly basis at sites T2-8 (Fig. 1a). During 
the microbial observation period (Section 3.2), samples were taken 
twice-weekly at T6 and T8 to be coincident with samples taken for E. coli 
analysis. Daily bulk samples of precipitation were also collected using an 
ISCO-3700 autosampler. 

3.2. Microbial and livestock count data 

Within the study, a more intense field campaign was carried out 
between 08/06/17 and 31/08/17 (the “microbial observation period” – 
MOP) to collect higher-temporal-resolution data for stream E. coli con-
centrations and livestock counts. This corresponded to when most 
livestock are in the fields and potential for faecal contamination is 
elevated (Kay et al., 2008). Twice-weekly sampling for E. coli occurred 
during this period at the outlet, and from 06/07/17 at T6 and T8 to 

Fig. 1. The Tulloch Burn catchment, with maps showing a) An overview of the catchment and monitoring locations; b) Soil types based on Soil Survey of Scotland 
Staff (2014); c) Designations of land parcels and cells containing a channel (potentially with an area of degraded soil) as provided to MAFIO. In the latter, the 
appearance of “L” or “R” in cells containing a channel denote the permanent direct accessibility of the stream to livestock in Mid Pastures (L) and (R), respectively, 
whilst DS1-3 are the designations given to the three areas of degraded soil associated with discrete stream crossing points. The stream in (a) and all data in (b) and (c) 
are presented on the 30 � 30 m grid utilised by EcH2O-iso and MAFIO. Also provided are drone-based aerial images of the catchment showing examples of d) 
Fencing-off of the stream from adjacent fields and areas of soil degradation; e) Sections of the stream directly accessible to livestock. For context, selected land parcel 
and degraded soil designations and approximate sampling locations are provided in the aerial images using the same symbols as in a). An example of soil degradation 
(DS3) in the catchment is shown in (f). 
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characterise spatial variability in concentrations arising from differing 
catchment characteristics (Fig. 1a). Samples for E. coli were collected 
(working upstream to T8) in glass bottles sterilised by autoclaving at 
123 �C for 20 min. Care was taken not to disturb the channel bed to 
prevent contamination from E. coli stored in the sediment. Samples were 
placed in cool boxes until processing began within 6 h of collection. 
Concentrations of E. coli were determined using the Colilert-18 most--
probable-number (MPN) method (IDEXX Laboratories, Westbrook, 
Maine, USA). Samples were well-shaken to ensure uniform distribution 
of E. coli prior to 100 ml being decanted to provide concentrations in 
MPN 100 ml� 1. When high concentrations of E. coli were likely, dilutions 
were made using sterile Ringers’ solution. The limit of detection for 
undiluted samples was 1 MPN 100 ml� 1. E. coli loads (MPN d� 1) were 
derived by multiplying observed concentrations of E. coli at the outlet, 
T6 and T8 by average daily discharge for each respective site. 

Number and type of livestock in each agricultural land parcel of the 
catchment (Fig. 1c) was recorded each sampling day. Where a land 
parcel represented a field with boundaries that extended beyond the 
Tulloch Burn catchment, the total number of livestock in the whole field 
was scaled by the fraction of the field falling within the land parcel. This 
assumed livestock would be uniformly distributed within a given field 
(c.f. Dorner et al., 2006; Haydon and Deletic, 2006). If livestock could 
move between land parcels, then the total number of livestock in all 
connected parcels was counted and scaled to each individually based on 
the fraction of the total connected area they represented. In addition, 
whether gates prevented livestock access to the stream at crossing points 
DS1-3 (Fig. 1c) was also recorded. The remainder of the stream was 
either fenced off and inaccessible to livestock, or, for stream sections in 
Mid Pastures (L) and (R), permanently open to livestock (Fig. 1c and e). 
Daily timeseries of stream access and livestock counts were generated 
from the twice-weekly observations by assuming any changes occurring 
between successive observation days did so at the mid-point between 
them. 

3.3. Setup of EcH2O-iso for the Tulloch Burn 

In EcH2O-iso, the spatial grid for simulations is defined by a digital 
elevation model (Kuppel et al., 2018a). A 5 � 5 m resolution LandMap 
digital terrain model (DTM) was resampled to 30 � 30 m resolution for 
delineating the Tulloch Burn catchment and deriving local slopes and 
drainage directions. The relatively coarse spatial resolution was neces-
sary to keep model runtimes manageable given the long spin-up period 
needed for simulated water ages to stabilise. Simulation of 22 years with 
a daily timestep was necessary, with the period 27/04/17 to 31/12/17 
for the last year retained for further analysis. The 22-year spinup was 
achieved by looping meteorological and isotopic inputs for 2016–2017 
eleven times (c.f. Hrachowitz et al., 2010). Meteorological data before 
establishment of a catchment weather station (October 2016) were 
derived from the adjacent Aboyne and Bruntland Burn stations using 
statistical relationships from periods of overlapping data, whilst radia-
tion for all of 2016 was available from the ERA-Interim climate rean-
alysis. For altitudinal effects on precipitation and temperature, a 5.5% 
increase in precipitation (Ala-aho et al., 2017) and decrease of 0.6 �C 
(Goody and Yung, 1995) with every 100 m elevation gain was 
implemented. 

Parameterisation of soil hydrological properties in EcH2O-iso was 
based on the five mapped soil types in the catchment (Soil Survey of 
Scotland Staff, 2014, Fig. 1b). Soil properties were assumed to be uni-
form within each type. To facilitate parameterisation of vegetation, land 
parcels of the Tulloch Burn in Fig. 1c were divided into three categories: 
agriculture, forest and heather moorland. Based on local knowledge, 
agricultural areas were assumed to comprise 95% grass and 5% bare 
soil, forested land was assumed to comprise 68% conifers, 30% grasses 
and 2% bare soil, and heather moorland was assumed to comprise 95% 
heather and 5% bare soil. To identify parameters for calibration, an 
initial sensitivity analysis was undertaken following the method of 

Morris (1991) and Sohier et al. (2014) using eight trajectories and a 
radial step for evaluating the parameter space. This identified 11 
soil-related, 13 vegetation-related and two channel-related parameters 
as sensitive (Table S1), resulting in the need to calibrate 96 individual 
parameter values ([11 � 5]þ[13 � 3]þ2 ¼ 96). Values of fixed pa-
rameters are given in Table S2. 

3.4. Multi-criteria calibration of EcH2O-iso 

Calibration of the 96 parameter values followed a multi-criteria 
approach incorporating stream discharge (outlet) and δ2H (outlet þ
sites T2-8) as calibration targets. Latin Hypercube Sampling was used to 
generate 100,000 parameter sets for EcH2O-iso, based on the sampling 
ranges given in Table S1. For each model run, mean absolute errors 
(MAEs; Willmott and Matsuura, 2005) were calculated to quantify the 
skill of the run in simulating the dynamics of each calibration target for 
the period 27/04/17 to 31/12/17. For discharge, use of MAE avoided 
overemphasis on high-flows typical of alternatives such as the 
Nash-Sutcliffe efficiency statistic (Krause et al., 2005; Legates and 
McCabe, 1999), whilst for isotopes the limited variability in observa-
tions and daily timestep of the model necessitated use of a measure of 
average error (c.f. Gupta et al., 2009; Schaefeli and Gupta, 2007). A 
single performance metric for each model run was then derived by 
combining MAEs for individual calibration targets via a 
weighted-addition (e.g. Beven, 2012). This allowed the number of ob-
servations for each calibration target to determine the influence of its 
associated MAE in defining overall performance of the run and enabled 
identification of a “best” run for use in providing the hydrological 
environment for MAFIO (Section 3.5.2). 

As MAE is dimensional with an optimal value of 0, it was necessary to 
convert the MAEs associated with each calibration target into dimen-
sionless metrics that monotonically increase with model performance, 
prior to implementing the weighted addition. The latter need was met by 
calculating the metric (1-MAE), which increases with model perfor-
mance to an optimum of 1 (in both instances 1 is in units of the cali-
bration target). To remove dimensionality and obtain a metric (MAE*) 
for use in the weighted addition, the following equation was applied: 

MAE*
i;j ¼

�
1 � MAEi;j

�
� minð1 � MAEÞj

maxð1 � MAEÞj � minð1 � MAEÞj
(2)  

where MAEi,j is the MAE associated with calibration target j for model 
run i and (1-MAE)j is the complete set of (1-MAE) associated with cali-
bration target j from all 100,000 model runs. For a given run, a final 
goodness of fit in the range [0,1] was obtained through the weighted 
addition: 

GOFi ¼
Xn

j¼1
Wj:MAE*

i;j (3)  

where GOFi is the goodness of fit value of run i and Wj is the weighting 
given to the performance metric MAE* associated with calibration target 
j. The weighting of a performance metric associated with a given cali-
bration target was the fraction of observations for all calibration targets 
that it contained. Numbers of observations and consequent weightings 
for each target used in the calibration are detailed in Table 1. Following 
calibration, an ensemble of the 100 model runs with the highest GOF 
values (behavioural runs) were retained to examine model performance 
and uncertainty. 

3.5. Setup of MAFIO for the Tulloch Burn 

As a first test of the model, MAFIO was used to simulate the behav-
iour and transport of E. coli in the Tulloch Burn during the MOP. This 
section describes the setup of the catchment and hydrological environ-
ments of the model (see Section 3.2 of Neill et al., 2020) and its 
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parameterisation for E. coli. 

3.5.1. Catchment environment 
Table 3 of Neill et al. (2020) outlines the inputs necessary to char-

acterise the catchment environment. Catchment extent and local 
drainage directions were defined from the 30 � 30 m DTM (identical to 
EcH2O-iso). The spatial distribution of land parcels and of cells con-
taining degraded soil/the channel were defined as shown in Fig. 1c. To 
facilitate representation of sub-grid heterogeneity in the latter, channel 
widths were derived from linear interpolation between field measure-
ments of bankfull width. In addition, land parcels either adjacent to the 
stream (stream-associated land parcels) or from which livestock could 
contribute to soil degradation were defined as those falling within the 
30 � 30 m footprint of a given cell as determined from field observations 
and aerial imagery (Table S3). The cell(s) immediately upslope of those 
containing degraded soil/the channel were defined from local drainage 
directions (Fig. S1). Timeseries of livestock counts and access to the 
stream were as described in Section 3.2. 

3.5.2. Hydrological environment 
The hydrological environment of MAFIO was simulated by the “best” 

overall ensemble run of EcH2O-iso. To qualitatively assess the potential 
for uncertainty in the outputs of EcH2O-iso to impact MAFIO simula-
tions, spatial patterns of surface and groundwater flow paths and soil 
saturation deficit simulated over the MOP by the “best” run and by the 
100 behavioural runs were compared. This indicative approach was 
taken as a full quantitative uncertainty analysis would require using the 
100 behavioural EcH2O-iso runs to generate the hydrological environ-
ment for an ensemble of MAFIO runs, the latter necessary to account for 
the effect of stochasticity (see Section 3.6). Such an uncertainty analysis 
was beyond the scope of this initial proof-of-concept test of MAFIO; 
however, this will be a focus of future work. To aid in assessing process 
representation in MAFIO, the simulated hydrological environment was 
characterised by generating spatial summaries of discharge, δ2H and 
water ages in the stream, and of overland flow, soil saturation deficit and 
groundwater fluxes within the catchment, for the whole MOP and for 
exemplar “dry” (10/08/17) and “wet” (15/08/17) days. Here, stream-
water ages denote how long water contributing to discharge spent 
travelling through the catchment since entering it as precipitation 
(Sprenger et al., 2019). 

3.5.3. Parameterisation of MAFIO sub-models 
Parameter values for the MAFIO sub-models are presented in Table 4 

of Neill et al. (2020). Sheep and cattle were the only livestock reared in 
the catchment. Most parameter values were taken from the extensive 
literature on E. coli as an FIO. Exceptions were the parameters faecesConc 
(concentration of FIOs in livestock faeces) and agentsRepresent (number 
of FIOs shed in reality for which an FIO-agent is introduced into the 
simulation). For the former, geometric mean concentrations of E. coli in 
sheep and cattle faeces were determined from faecal samples collected 
in the catchment during 2017 and 2018 (Avery et al., unpublished data). 

Meanwhile, the minimum value of faecesConc was used for agentsRe-
present (i.e. 4.18 � 105 MPN FIO-agent-1). This was the minimum 
permissible value given available computational resources; however, 
similarities between simulations obtained using this value and a value of 
1 � 108 MPN FIO-agent-1 (Data not shown) suggested that significant 
changes to model outputs would be unlikely if a smaller value were to be 
used. This provided confidence that a sufficient quantum of E. coli was 
simulated by MAFIO. Despite potential uncertainty in the values of 
model parameters (Oliver et al., 2016), calibration was not undertaken 
in this initial application. This was primarily because use of stochasticity 
to model processes conceptualised in ABMs hinders the use of “fit-to--
data” metrics (i.e. those quantifying model skill in reproducing dy-
namics of observed data) often used in automated calibration (Polhill 
and Salt, 2017). This is further described in Section 3.6. A benefit to 
using the model uncalibrated is that it offers insight into the process 
consistency of the model if physically-meaningful parameter values are 
used (c.f. Kuppel et al., 2018a), as compensatory parameter effects on 
model structural deficiencies from calibration are avoided (c.f. Beven, 
2019). 

3.6. Application of MAFIO 

MAFIO was applied for the MOP on a 30 � 30 m spatial grid using a 
daily time step, consistent with the spatio-temporal resolution of data 
characterising the catchment and hydrological environments. For initi-
alisation, values for the fraction of damaged soil (dFrac) at DS1, DS2 and 
DS3 were set to 0.72, 0.53 and 0.7155, respectively, based on applica-
tion of Eq. 3 of Neill et al. (2020) with livestock counts made in the 
catchment since 01/01/17. As these counts also showed all pasture land 
parcels to have been grazed to some extent since the start of 2017, all 
were set to have FIO-agents already in the soil at initialisation as a 
significant soil reservoir of E. coli may persist for several months even 
after cessation of grazing (Muirhead, 2009). Initial numbers of 
FIO-agents were based on estimates of the total number of E. coli in the 
upper soil of each land parcel (between 4.1 � 109 and 9.3 � 1010 E. coli). 
These were approximated from concentrations of E. coli (in MPN g� 1) 
measured in the top 5 cm of soil at five locations within the Lower and 
Mid Pasture fields (Avery et al., unpublished data) and estimates of the 
mass of soil in each land parcel over the same depth. 

An ensemble of 30 model runs using the same parameterisation and 
input was made for the MOP to characterise stochastic variability in 
MAFIO outputs (Abdou et al., 2012). Combined with the fact that nat-
ural variability intrinsic to complex systems can cause observed data to 
be conditional on a particular trajectory having been taken by the sys-
tem, of which many may have been possible (Refsgaard et al., 2007; 
Windrum et al., 2007), this stochastic variability characteristic of ABM 
outputs can complicate assessments of model performance (Brown et al., 
2005). In particular, traditional “fit-to-data” metrics become inappro-
priate as exclusive means of evaluating ABM performance as a model 
that adequately represents the processes giving rise to observations 
could be unfairly penalised if, due to stochastic treatment of system 
processes, it simulates a range of plausible scenarios which may or may 
not include what was observed (Polhill and Salt, 2017). Whilst a 
“benchmark” alternative is yet to emerge, other ABM work has high-
lighted the value of combining quantitative performance evaluation 
with qualitative “checks” that focus on understanding how simulated 
characteristics at larger scales emerge from the processes influencing the 
behaviour of individual agents and assessing the plausibility of such 
processes similarly effecting the phenomena under investigation in re-
ality (Moss and Edmonds, 2005; Polhill et al., 2010; Polhill and Salt, 
2017). 

Consequently, the following approach to performance assessment 
was adopted. For each ensemble run, observed and simulated E. coli 
loads were compared quantitatively at the outlet, T6 and T8. Since 
MAFIO simulates fluxes of FIO-agents, simulated loads were approxi-
mated by multiplying FIO-agent fluxes by the value of agentsRepresent. 

Table 1 
The number of observations for each calibration target and the weighting for 
each target in the multi-criteria calibration.  

Dataset Number of observations Calibration weighting 

Discharge: Outlet 249 0.396 
Isotopes: Outlet 242 0.385 
Isotopes: T2 16 0.025 
Isotopes: T3 16 0.025 
Isotopes: T4 16 0.025 
Isotopes: T5 16 0.025 
Isotopes: T6 28 0.045 
Isotopes: T7 16 0.025 
Isotopes: T8 29 0.046 
Total 628 1.0  
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As this parameter dictates the precision to which observed loads can be 
simulated (c.f. Parry and Bithell, 2012), the skill of MAFIO in capturing 
periods of relatively more or less impaired microbial water quality was 
also assessed (c.f. Oliver et al., 2010; Porter et al., 2017). This was 
achieved by calculating Z-scores showing the number of standard de-
viations an observed E. coli load or simulated flux of FIO-agents was 
away from the mean of its associated timeseries. As observations were 
not available for all dates, Z-scores for simulated FIO-agent fluxes were 
based only on simulations that overlapped with observations. Spear-
man’s rank correlation coefficients were also used to assess how well 
MAFIO captured the relative order of observed E. coli loads at each site 
(c.f. Porter et al., 2017). For a qualitative “check” on the model, the 
plausibility of simulated outputs given the potential processes influ-
encing E. coli dynamics in the Tulloch Burn was the subject of a 
literature-based discussion (Section 5.1) that also considered the per-
formance of EcH2O-iso in simulating the hydrological environment. 
Whilst such qualitative evaluation is less robust than alternative 
methods based on consultation of independent experts (e.g. Moss and 
Edmonds, 2005; Polhill et al., 2010), the latter was beyond the scope of 
this initial MAFIO application. 

As a basis for assessing the potential of MAFIO in providing insights 
relevant to management, the overall flux of FIO-agents leaving the 
catchment in the stream (“exported FIO-agents”) was observed and 
further disaggregated into contributions from different livestock types 
and transfer mechanisms. The latter were derived from the attributes 
Domain type memory and Livestock type (see Table 2 of Neill et al., 2020) 
of exported FIO-agents. By observing the Location memory attribute, 
areas where exported FIO-agents entered the stream via direct deposi-
tion and pathways taken by exported FIO-agents reaching the stream in 
overland flow or seepage were also identified. For each timestep, 
pathways were derived by quantifying the total number of exported 
FIO-agents that had passed through each grid cell in overland flow or 
seepage at any point whilst being transported from their original 
spawning location to the stream (i.e. pathways reflect the transport of 
exported FIO-agents over their entire existence, not just during the 
timestep in which they were exported). Meanwhile, spatial patterns of 
direct deposition were characterised by quantifying the total number of 
exported FIO-agents entering the stream via direct deposition for each 
cell containing a channel. For each of the 30 ensemble runs of MAFIO, 

timestep totals were extracted for the example dry and wet days and 
further summed over the whole MOP. Median totals for each cell across 
the ensemble runs were then used to generate “average” maps of direct 
deposition and pathways taken to the stream by exported FIO-agents for 
each period of interest, whilst maps using ranges in totals were gener-
ated to evaluate the effect of stochastic variability in ensemble 
simulations. 

4. Results 

4.1. Hydrometric and isotope observations 

Hydroclimatic conditions in 2017 were typical for the region (Han-
naford et al., 2018). The study period started out relatively dry, with 
only 23 mm of precipitation falling by the end of May (Fig. 2a). 
Consequently, summer baseflows were established by mid-June 
(Fig. 2b), despite the largest precipitation event of the study (37.2 
mm d� 1) occurring at the beginning of that month, two days before the 
MOP commenced. For the remaining summer, precipitation fell in 
low-intensity events that generated small discharge responses (Fig. 2a–b 
and 3a). Sustained periods of precipitation in mid-September re-wetted 
the catchment leading to a rise in baseflows and the largest discharge 
responses (up to 31 L s� 1) being observed in November (Fig. 2a–b). 

The δ2H composition of precipitation ranged between � 153.1‰ and 
� 14.9‰ (Fig. 2a). By contrast, the δ2H composition of stream water at 
the outlet was substantially damped (range � 64.2‰ to � 55.0‰), 
though deviations in the direction of the precipitation signal were 
observed during events (Fig. 2b). At T2-8, δ2H was similarly damped, 
ranging between � 61.0‰ and � 54.8‰ across all sites (Fig. 2c). These 
sites behaved similarly to the outlet in terms of variability; however, the 
upper T7 and T8 sites had slightly more enriched δ2H values, with values 
then becoming more depleted towards the outlet (Fig. 2c). Daily average 
air temperatures peaked at ~18 �C in May and June and fluctuated ~12 
�C until September when temperatures fell towards a minimum of � 3 �C 
in December (Fig. 2d). Solar radiation followed a similar trajectory 
(Fig. 2d). 

Fig. 2. For the full study period, observed timeseries of a) Precipitation and its associated isotopic composition; b) Daily average discharge at the catchment outlet 
and its associated isotopic composition; c) Isotopic compositions of streamwater at synoptic sampling sites; d) Daily average temperature and solar radiation. 
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4.2. Microbial observation period (MOP) 

Microbial observations began as the hydrograph experienced a small 
secondary peak in response to precipitation that occurred following the 
37.2 mm d� 1 precipitation event (Fig. 2a–b and 3a). Peak daily average 
temperature and solar radiation for the overall study period fell within 
the MOP, with the former averaging 12.7 �C and the latter 176 W m� 2 

(Fig. 3b). 

Temporal dynamics of E. coli concentrations and loads at individual 
sites were similar (Fig. 3c–d). At the outlet, concentrations ranged from 
2.3 � 101 to 2.0 � 103 MPN 100 ml� 1 (Fig. 3c), whilst loads varied 
between 4.9 � 107 and 4.1 � 109 MPN d� 1 (Fig. 3d). Both were highest 
towards the end of the MOP and lowest during early July. The latter 
coincided with no livestock present in fields closest to the catchment 
outlet (Figs. 1c and 3f), suggesting that this period may have been 
characterised by background concentrations of E. coli. At T6, concen-
trations and loads varied between 4.4 � 101 and 9.1 � 103 MPN 100 
ml� 1 and 5.0 � 107 and 8.7 � 109 MPN d� 1, respectively (Fig. 3c–d). 
Thus, whilst T6 and the outlet generally experienced similar concen-
trations and loads of E. coli, these could be higher at the former site. T8 
was generally the least-contaminated site as concentrations of E. coli 
were <10 MPN 100 ml� 1 on over half the sampling days (Fig. 3c). 
However, higher concentrations on the order of 102 MPN 100 ml� 1 were 
also observed, most frequently towards the end of the MOP. Loads varied 
between 5.8 � 105 and 3.9 � 108 MPN d� 1 (Fig. 3d) and were, conse-
quently, often much smaller than loads observed at the outlet and T6 
(exceptions are the last three sample dates of the MOP where loads at T8 
were greater than at T6). A clear response of E. coli concentrations and 
loads to discharge was elusive; however, a link to livestock counts was 
more apparent at the outlet and T6. 

Fig. 3. For the microbial observation period, timeseries of observed a) Precipitation and daily average discharge at the catchment outlet; b) Daily average tem-
perature and solar radiation; c) Concentrations of E. coli (plotted on a log scale); d) E. coli loads (plotted on a log scale); e) Accessibility of the stream to livestock at 
the discrete crossing points (DS1-3 in Fig. 1c); f) Sheep and cattle counts. The red and blue dashed lines denote the example dry and wet days, respectively. In (c) and 
(d), MPN ¼ most-probable-number. In (e), the abbreviations LP and MP refer to Lower Pasture and Mid Pasture, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
The mean absolute error (MAE) for simulations of discharge and isotope data by 
the “best” run of EcH2O-iso (Best MAE), and summary statistics for simulations 
by the 100 behavioural runs.  

Dataset Best MAE Mean MAE Min - Max MAE 

Discharge: Outlet 1.37 L s� 1 1.56 L s� 1 1.24–2.04 L s� 1 

Isotopes: Outlet 1.41‰ 1.99‰ 1.12–3.68‰ 
Isotopes: T2 1.30‰ 2.06‰ 1.02–3.82‰ 
Isotopes: T3 1.14‰ 2.13‰ 0.95–3.82‰ 
Isotopes: T4 2.73‰ 3.57‰ 0.83–6.20‰ 
Isotopes: T5 2.69‰ 3.56‰ 1.00–6.25‰ 
Isotopes: T6 2.00‰ 3.36‰ 0.86–6.51‰ 
Isotopes: T7 3.02‰ 4.64‰ 1.55–8.21‰ 
Isotopes: T8 2.52‰ 4.23‰ 1.30–8.08‰  

A.J. Neill et al.                                                                                                                                                                                                                                  



Journal of Environmental Management 270 (2020) 110905

8

Timeseries showing stream accessibility to livestock at the three 
discrete crossing points are shown in Fig. 3e. Sheep were the main 
livestock in the catchment and were in Lower Pasture (L), Mid Pasture 
(R), Top Pasture or, for a short time late in the MOP, Lower Pasture (R) 
(Fig. 3f). Cattle were briefly present in Mid Pasture (R) from late June to 
early July (Fig. 3f). 

4.3. Multi-criteria calibration of EcH2O-iso 

The results of calibrating EcH2O-iso to discharge and spatially- 
distributed isotope data are summarised in Table 2 and Fig. 4; cali-
brated parameter ranges are given in Table S1. Discharge was generally 
well-simulated (Table 2), with behavioural model runs successfully 
capturing the summer baseflows and small events that characterised the 
MOP alongside the re-wetting of the catchment in September and timing 
of the largest discharges in November (Fig. 4b). The magnitudes of the 
latter were, however, under-estimated, as were discharges at the start of 
the simulation period (Fig. 4b). For isotopes, the model could reproduce 
the markedly-damped composition of streamwater at the outlet 
(Table 2; Fig. 4c). Isotopic variability in response to precipitation was 
also generally well-captured, though more extreme excursions could be 
simulated. Skill in simulating isotope dynamics at the synoptic sampling 
sites was more variable (Table 2; Fig. 4d–j), likely reflecting their lower 
weighting in the multi-criteria calibration (Table 1) and the sparser 

temporal resolution of observations. Performance was best for sites 
closer to the outlet, whilst simulations for sites further upstream showed 
greater uncertainty with some ensemble runs exhibiting poorer perfor-
mance. However, performance was still maintained in the “best” overall 
run, with MAEs not exceeding ~3‰ at the upstream sites (Table 2). 
Overall, it was encouraging that EcH2O-iso generally reproduced the 
damped isotope signals observed at the synoptic sampling sites. 

4.4. Characterisation of the hydrological environment 

Median discharges over the MOP (Fig. 5a) simulated by the “best” 
run of EcH2O-iso decreased in age with distance downstream (Fig. 5e) 
but did not exhibit a clear spatial pattern in δ2H (Fig. 5c). Median 
streamwater ages were relatively old (averaging ~1.5 years), reflecting 
the dominant simulation of groundwater fluxes over surface water 
fluxes. Overland flow was only simulated for very restricted areas, 
mainly limited to stream-proximal cells in the lower part of the catch-
ment (Fig. 5b). Over the MOP, cells for which overland flow was 
simulated generated total fluxes <1000 mm. By contrast, simulated 
groundwater fluxes over the MOP could be up to 4700 mm for individual 
cells and occurred across much of the catchment (Fig. 5f). The limited 
extent of simulated overland flow arose from much of the soil in the 
catchment being in saturation deficit (Fig. 5d). Highest deficits were 
generally simulated in the upper catchment in areas of forest and 

Fig. 4. Timeseries of a) Precipitation; b) Observed and modelled discharge at the catchment outlet; c-j) Observed and modelled isotopes at the catchment outlet and 
synoptic sampling sites. Shaded areas show the 90% spread of simulations from the behavioural ensemble, whilst the solid blue line shows the “best” simulation. The 
red and blue dashed lines denote the example dry and wet days, respectively. Note the different y-scales between isotope data for the outlet (c) and for the synoptic 
sampling sites (d–j), necessary to show the greater spread of the simulations for the latter. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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heather (Fig. 1c) underlain by podzolic soils (Fig. 1b); here, overland 
and groundwater fluxes were consequently minimal (Fig. 5b and f). 

Stream discharges simulated for the example wet day were higher 
than for the dry day (Fig. 6a) and consisted of younger water (median 
age of streamwater 399 days vs. 522 days; Fig. 6e). The isotopic 
composition of the stream was also generally more enriched in wet 
conditions (Fig. 6c). This, together with the lower streamwater ages, 
indicates increased contributions of younger overland flow and soil 

water to streamflow during summer wet conditions compared with the 
dominance of older groundwater during drier periods. However, even 
when wet, overland flow remained spatially limited, with just a few cells 
adjacent to the stream and a small number of distal, unconnected cells 
simulating fluxes of up to 35.3 mm d� 1 (Fig. 6b). In dry conditions, 
overland flow was generated from more restricted areas that maintained 
saturation by virtue of their position in flatter parts of the riparian area 
(Fig. 6b). Overland flow was limited due to most soil being in saturation 
deficit in both dry and wet conditions (Fig. 6d). In contrast, groundwater 
fluxes were active across similar spatial areas on the wet and dry days, 
with fluxes of up to 57.8 mm d� 1 and 35.7 mm d� 1 simulated for each 
day, respectively (Fig. 6f). 

Assessment of the spatial outputs from the 100 behavioural runs of 
EcH2O-iso revealed that generation of overland flow from areas prox-
imal to the stream and the dominance of groundwater simulated by the 
“best” run was also simulated with reasonable certainty (i.e. in >50% of 
runs) by the ensemble (Fig. 7a–c). In addition, relative spatial patterns of 
moisture deficits were comparable (Fig. 7d). However, it was possible 
for some behavioural runs to simulate larger areas of overland flow 
generation, leading to uncertainty in the exact spatial extent of surface 
flow paths (Fig. 7c). The implications of this will be discussed with 
respect to assessing the adequacy of process conceptualisation in 
MAFIO. 

4.5. Performance of MAFIO 

Simulated E. coli loads at the outlet captured the main dynamics of 
observations quite well; in particular, the observed decrease in loads in 
early July and subsequent increase, relatively constant loads in early-to 
mid-August, and brief dip in loads towards the end of the MOP were all 
simulated (Fig. 8a). However, there was a general tendency for loads to 
be over-predicted, with the main exceptions being at the end of the MOP 
and when observed loads decreased in July (Fig. 8a). Z-scores at the 
outlet show that the model was more successful in capturing when loads 
were above- and below-average, with the sign of the Z-scores simulated 
correctly in the majority of cases (Fig. 8b). Exceptions were at the end of 
the simulation (reflecting over-prediction of observed loads earlier on 
despite absolute loads at the end of the MOP being successfully 
captured) and on 03/07/17. Spearman’s rank correlations ranged be-
tween 0.21 and 0.30 with an average of 0.26 across the 30 ensemble 
runs. Stochastic variability in outlet simulations was minimal 
(Fig. 8a–b). 

At T6, all ensemble runs simulated loads of zero and Z-scores below 
0 whenever livestock were absent from Mid Pastures (R) or (L) (Figs. 3f 
and 8c-d). Non-zero loads were only simulated when Mid Pasture (R) 
had livestock present (Figs. 3f and 8c); however, simulated loads and Z- 
scores exhibited a high degree of stochastic variability (Fig. 8c–d). 
Consequently, Spearman’s rank correlations varied between runs, 
ranging from � 0.12 to 0.32. When livestock were present in Mid Pasture 
(R), observations generally fell within simulation bands; however, loads 
were under-estimated when livestock were absent (Figs. 3f and 8c). For 
relative performance, observed Z-scores were often within the range 
simulated (Fig. 8d). When non-zero loads were simulated, the large 
range in simulated Z-scores meant that MAFIO was not consistent be-
tween ensemble runs in terms of simulating loads above- or below- 
average. At the end of the period, observed and simulated Z-scores 
were similar, suggesting that MAFIO successfully captured this as a time 
of relatively less-impaired microbial water quality. 

Ensemble runs always simulated zero loads at T8 (Fig. 8e). Conse-
quently, neither Z-scores for MAFIO simulations nor Spearman’s rank 
correlations could be calculated. Qualitatively, the simulated behaviour 
was largely consistent with the low concentrations and loads of E. coli at 
T8 (Fig. 3c–d), and negative observed Z-scores (Fig. 8f). Quantitatively, 
however, the simulation of zero loads was not consistent with 
observations. 

Fig. 5. Maps showing for the microbial observation period a) Median stream 
discharge; b) Total overland flow; c) Median stream δ2H; d) Median soil satu-
ration deficit; e) Median streamwater age; f) Total groundwater flow, based on 
the “best” ensemble run of EcH2O-iso. Overland (b) and groundwater (f) flows 
are plotted on log scales for clarity, with areas of white denoting fluxes of 0. 
MOP ¼ Microbial observation period. 
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Fig. 6. For the example dry and wet days, maps showing a) Discharge; b) Overland flow; c) Streamwater δ2H; d) Soil saturation deficit; e) Streamwater age; f) 
Groundwater flow, based on the “best” ensemble run of EcH2O-iso. Overland (b) and groundwater (f) flows are plotted on log scales for clarity, with areas of white 
denoting fluxes of 0. 
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4.6. Sources and mechanisms contributing E. coli to streams 

To help interpret timeseries relating to exported FIO-agents, simu-
lated effective precipitation, discharge at the outlet and storage of FIO- 
agents are shown in Fig. 9a–b. The simulated flux of exported FIO-agents 
(Fig. 9c) strongly reflected storage dynamics of FIO-agents (Fig. 9b) and 
livestock counts (Fig. 3f). Exported FIO-agents predominantly entered 
the stream via seepage from degraded soil (Fig. 9d) as simulated over-
land flow was limited (Fig. 5). When overland flow did transfer FIO- 
agents to the stream, localised spikes in export fluxes were simulated 
(Fig. 9c–d). Contributions were non-linear due to the changing storage 
of FIO-agents. When cattle were in Mid Pasture (R), both seepage and 
direct deposition made their greatest contributions of FIO-agents to the 
stream (Figs. 3f and 9d), reflecting the higher loading rates of E. coli from 
cattle (see Table 4 in Neill et al., 2020) and the extensive stream access 
in this field (Fig. 1c). Variability in flux magnitudes between ensemble 
runs was also greatest at this time (Fig. 9c). Contributions from direct 
deposition were otherwise minimal, reflecting the lower loading rates of 
sheep (see Table 4 in Neill et al., 2020) when present in Mid Pasture (R) 

or the limited number of discrete crossing points allowing stream access 
to livestock in other fields (Figs. 1c and 3e). Contributions from different 
livestock types largely corresponded to their presence in the catchment 
(Figs. 3f and 9e); however, a limited “memory-effect” in contributions 
reflected survival of FIO-agents in areas of degraded soil. 

Over the MOP, similar median numbers of exported FIO-agents 
entered the stream via direct deposition wherever livestock were pre-
sent with stream access (Figs. 1c, 3f and 10a). However, stochastic 
variability across the ensemble runs was evident (Fig. 10b). Pathways 
taken by exported FIO-agents reaching the stream in overland flow or 
seepage were constrained by the limited area over which the former was 
generated in the catchment (Figs. 5 and 10c). Fluxes of exported FIO- 
agents along individual pathways increased towards the stream with 
generation of overland flow (Figs. 5b and 10c); however, short pathways 
between areas of degraded soil and the stream were consistently fol-
lowed by the largest numbers of exported FIO-agents (Figs. 1c and 10c). 
Overall, source areas contributing exported FIO-agents to the stream 
over the MOP were always restricted to stream-proximal locations 
(Fig. 10c–d). Stochastic variability in numbers of exported FIO-agents 

Fig. 7. Comparison of spatial simulations 
made by the “best” run of EcH2O-iso and by 
an ensemble of 100 behavioural runs: a) 
Spatial extent of cells with total overland 
flow (OLF) fluxes greater than 0 mm over 
the microbial observation period (i.e. 
“Active flowpath”) simulated by the “best” 
run and >50% of the ensemble; b) As (a) but 
for groundwater (GW); c) Histogram quan-
tifying the number of ensemble runs in 
which different numbers of cells were 
simulated to have total OLF or GW fluxes 
greater than 0 mm over the microbial 
observation period (solid lines denote the 
“best” run); d) Spatial patterns of median 
soil saturation deficit over the microbial 
observation period simulated by the “best” 
run and of the median of the median deficits 
simulated by the behavioural ensemble. 
MOP ¼ Microbial observation period.   
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following particular pathways to the stream was usually less than for 
numbers being directly deposited in the stream (Fig. 10b and d). 

On the example dry and wet days, there was a difference in the 
spatial distribution of cells for which the median number of exported 
FIO-agents entering the stream via direct deposition was non-zero 
(Fig. 11a and c). However, similar counts of sheep in Lower Pasture 
(L) and Mid Pasture (R) on both days (Fig. 3f) meant that when non-zero, 
median numbers were comparable (Fig. 11a and c). In addition, sto-
chastic variability across ensemble runs showed that on either day, 
direct deposition of exported FIO-agents could occur wherever livestock 
had stream access (Fig. 11b and d). More extensive overland flow on the 
wet day (Fig. 6b) increased the spatial extent of pathways taken by 
exported FIO-agents to the stream, although contributing areas were 
always limited to near-stream locations (Fig. 11e and g). Fluxes of FIO- 
agents along individual pathways were elevated in wet conditions 
(Fig. 11g) due to the increased generation of overland flow (Fig. 6b). For 
both the dry and wet days, “average” maps indicated pathways taken by 
exported FIO-agents to the stream (Fig. 11e and g) that fully consisted of 
cells where overland flow was simulated (Fig. 6b) or seepage from 
degraded soil was possible (Fig. 1c). However, from considering the 
effect of stochastic variability between ensemble simulations (Fig. 11f 
and h), it is apparent that in some instances, exported FIO-agents had 

followed paths that included cells not hydrologically connected to the 
stream during the timestep in question (e.g. in Lower Pasture [L]; 
Figs. 1c and 6b). This indicates that FIO-agents previously moved and 
infiltrated into the soil could be exfiltrated and further transported. 
Stochastic variability in numbers of exported FIO-agents following 
particular pathways to the stream was generally lower overall for the dry 
event (Fig. 11f and h). 

5. Discussion 

5.1. To what extent does MAFIO resolve the main processes driving 
observed FIO dynamics? 

Using models to explore issues of water quality, especially in a 
decision-making context, requires confidence that processes governing 
the determinand of interest are adequately captured (c.f. Vach�e and 
McDonnell, 2006; Wellen et al., 2015). Consequently, the new 
agent-based model MAFIO was applied to the Tulloch Burn for a rela-
tively data-rich period, in order to assess the adequacy of process rep-
resentation in the model. The spatially-distributed, tracer-aided 
ecohydrological model EcH2O-iso provided the hydrological environ-
ment to improve confidence in the robustness of simulated hydrological 

Fig. 8. Comparison of observed and simulated E. coli loads and Z-scores for a-b) The catchment outlet; c-d) T6; e-f) T8. In the latter, only observed Z-scores are given 
due to all ensemble runs of MAFIO simulating fluxes of zero FIO-agents for all timesteps. For modelled data, the square marker represents the median Z-score across 
the 30 ensemble runs of MAFIO, whilst the error bars/shaded areas denote the range of Z-scores/simulated loads. The red and blue dashed lines denote the example 
dry and wet days, respectively. Loads are plotted on a log scale - for presentational purposes, simulated loads of zero are set to plot along the lower limit of the y-axis 
(one order of magnitude below the minimum observed or simulated non-zero load across all sites). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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processes underpinning FIO simulations (c.f. Birkel and Soulsby, 2015; 
Neill et al., 2019). However, whilst multi-criteria calibration to 
discharge and isotope data allowed elements of catchment hydrological 
functioning to be reasonably constrained (i.e. dominance of ground-
water, generation of overland flow proximal to the stream), uncertainty 
persisted in the exact spatial extent of overland flow paths (Fig. 7c). This 
can obscure whether deficiencies in FIO simulations arise from uncer-
tainty in simulated hydrology or the need to refine process con-
ceptualisation in MAFIO; where this may be an issue is highlighted in the 
discussion that follows. This also necessitates that a full quantitative 
uncertainty analysis be the subject of future work (c.f. Beven and Lamb, 
2017), and reinforces the need for collection of diverse datasets for use 
in constraining highly-parametrised models (Kelleher et al., 2017; 
Kuppel et al., 2018b). 

The consistent simulation of zero loads of E. coli at T8 despite non- 
zero loads being observed likely indicates that process conceptualisa-
tion in MAFIO itself requires refinement (Fig. 8e). This assertion arises 
from confidence in the lack of surface connectivity between T8 and Top 
Pasture (the only upstream source of livestock-derived FIOs) simulated 
by the “best” run of EcH2O-iso (Fig. 5b), despite the overall uncertainty 
in the exact extent of overland flow paths (Fig. 7c). Specifically, the skill 
of this run in capturing observed isotope dynamics at T8 (Fig. 4j) in-
dicates that no overland flow upstream of this site is plausible. 
Furthermore, increased tree water use in the forest separating T8 and 
Top Pasture (Douinot et al., 2019) combined with likely enhanced 
filtering of FIOs in overland flow by the forest floor (Kay et al., 2012) 
suggests there would be limited opportunities for surface transport of 
FIOs between these locations. Given that deer and hares have been 
observed in the forest around T8, a possible refinement to MAFIO could 
be inclusion of wild animals as sources of FIOs. Indeed, wildlife 
(including gastropods, frogs and fish as previously unrecognised sour-
ces; Frick et al., 2018) have previously been found to significantly 
impact microbial water quality, even in agricultural areas (Muirhead 
et al., 2011). An alternative refinement could be accounting for possible 
sources of “naturalised” FIOs that have adapted to persist and grow in 
the environment (e.g. Jang et al., 2017). A key issue to consider when 
conceptualising the former would be the increased uncertainty in 
loading and die-off parameters associated with FIOs from wildlife 
(Guber et al., 2015). Furthermore, difficulties also exist in characterising 
population levels and movement of wild animals in the landscape 
(Tetzlaff et al., 2010); however, these could likely be accommodated by 
representing wildlife behaviour stochastically in MAFIO. Whilst this 

would probably result in greater stochastic variability across ensemble 
simulations, it would help increase confidence that the potential impacts 
of wildlife as a source of FIOs are being represented. 

This last point is relevant when inferring process adequacy from the 
large spread in non-zero loads simulated at T6 (Fig. 8c–d). As there were 
again no surface flow paths upstream of this site in the simulated hy-
drological environment (Fig. 5b), FIO-agents could only be directly 
deposited in the stream by livestock in Mid Pasture (R). Given the sto-
chastic treatment of livestock movement and, consequently, direct 
deposition in MAFIO, it should be expected that different ensemble runs 
will collectively simulate a range of possible E. coli loads dependent on 
when and where livestock were simulated to directly defecate in the 
stream (c.f. Abdou et al., 2012). Given the plausibility of direct depo-
sition influencing microbial water quality at T6 when livestock are 
present in Mid Pasture (R) due to stream accessibility (Fig. 1c), observed 
loads may reflect one particular realisation of how livestock entered the 
stream and directly deposited (c.f. Windrum et al., 2007). Consequently, 
that observations could fall within the spread of simulated loads 
(Fig. 8c–d) likely suggests that MAFIO is adequately representing the 
process of direct deposition. Thus, it cannot be concluded that the large 
spread in simulated non-zero loads is indicative of model inadequacy (c. 
f. Parker and Meretsky, 2004). 

A more problematic feature of simulations at T6 is the consistent 
simulation of zero loads when livestock were absent from Mid Pasture 
(R) despite observed non-zero loads (Figs. 3f and 8c). This could reflect 
incorrect simulation of zero loads at T8, depending on the extent to 
which upstream locations influence microbial water quality at T6 (Neill 
et al., 2018; Vitro et al., 2017). Qualitative similarity between observed 
E. coli dynamics at T6 and T8 when livestock were absent from Mid 
Pasture (R) lends some support to this possibility (Fig. 3c–d and f). 
However, uncertainty in the exact spatial extent of flow paths simulated 
by EcH2O-iso also means that surface connectivity between Mid Pasture 
(R) and the stream could have plausibly been simulated by some 
behavioural model runs. Such connectivity could facilitate transfer of 
FIOs to the stream in the absence of livestock, depending on longevity of 
survival (Martinez et al., 2013). Consequently, further work to reduce 
uncertainty in simulated flow paths is necessary to determine whether 
under-predictions at T6 have a hydrological or microbiological cause. A 
further possibility could be that a streambed reservoir of E. coli from 
livestock in Mid Pasture (R) exists that can be mobilised by streamflow 
(McDonald et al., 1982). However, this mechanism would be unlikely to 
explain under-predictions that occurred during times of recessional and 

Fig. 9. Timeseries of a) Effective precipita-
tion and discharge simulated by the “best” 
ensemble run of EcH2O-iso; and b) FIO- 
agents stored in the catchment at the end 
of each timestep; c) Flux of FIO-agents 
exported from the catchment; d) Mecha-
nisms by which exported FIO-agents reached 
the stream; e) Contributions of exported FIO- 
agents from sheep and cattle, based on the 
30 ensemble runs of MAFIO. The red and 
blue dashed lines denote the example dry 
and wet days, respectively. All scales are 
linear. (For interpretation of the references 
to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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base flows (Figs. 3a and 8c; Nagels et al., 2002). 
Despite the tendency to over-estimate loads in absolute terms, 

MAFIO had most skill in capturing observed E. coli dynamics at the 
outlet (Fig. 8a–b). Furthermore, stochastic variability in simulations was 
reduced compared to T6 (Fig. 8a–d). Combined, these results suggest 
that potential process deficiencies impacting upstream sites had less 
influence here. This likely reflected greater opportunities for FIO-agents 
to reach the stream via seepage and transport in overland flow generated 
by areas proximal to the stream in the lower catchment (Figs. 1c, 5 and 
9). The promising performance of MAFIO at the outlet suggests that it 
reasonably well-captures these highly-localised mechanisms of FIO 
transfer as dominant drivers of impaired microbial water quality at this 
location. This is further supported by relative confidence in the simu-
lation of overland flow generation close to the stream and of soil satu-
ration deficits underpinning seepage (Fig. 7a and d) by EcH2O-iso, and 
would also be consistent with the likely importance of near-stream 
sources of FIOs in the wider Tarland Burn (Neill et al., 2018). The 
over-estimation of loads at the outlet, however, highlights there is scope 

for improving the degree to which simulations capture the detail in 
observations. Consequently, several avenues for model refinement are 
identified that may help increase correspondence between observed and 
simulated loads at the outlet and lead to more nuanced simulation of FIO 
dynamics in general. 

Many parameters relating to the loading, die-off, and transport of 
FIOs are characterised by uncertainty (Cho et al., 2016). Therefore, in 
addition to a quantitative assessment of how flow path uncertainty in 
EcH2O-iso affects MAFIO simulations, a sensitivity analysis and cali-
bration of MAFIO parameters should also be conducted. This may help 
better-constrain parameters and improve simulations whilst enhancing 
understanding of how parameter uncertainty is propagated into model 
outputs (e.g. Beven, 2006). However, limitations in using “fit-to-data” 
metrics to assess ABM performance likely means that alternative auto-
mated calibration procedures will need developing (c.f. Polhill and Salt, 
2017). MAFIO has also been applied at relatively coarse spatial (30 � 30 
m) and temporal (1-day timestep) resolutions in this initial application. 
Whilst this spatial scale is finer than permitted by most process-based 
FIO models (e.g. Dorner et al., 2006; Whitehead et al., 2016), 
resolving non-linearities in the fate and transport of FIOs arising from 
the effects of small-scale heterogenity in the landscape (e.g. 
micro-topography influencing flow paths; Frei et al., 2010) or processes 
operating at sub-daily timescales (e.g. intra-storm precipitation dy-
namics; McKergow and Davies-Colley, 2010) may be necessary for more 
nuanced simulation of FIO dynamics. Finally, alternative methods of 
allowing MAFIO to simulate the large populations of FIOs found in 
catchments could be trialled. One possibility is use of “super-individ-
uals” (Scheffer et al., 1995). Like FIO-agents, these are introduced into a 
simulation for every given number of real individuals. However, this 
number is then assigned to the super-individual as an attribute that is 
influenced by controlling processes, which may give a more complete 
simulation of dynamics that would be observed if all individuals were 
represented explicitly (Scheffer et al., 1995). Exploring these avenues 
for model refinement will be a focus of future work. 

5.2. What potential does MAFIO have for providing process-based insights 
into microbial water quality that are relevant for management? 

The preceding discussion highlights the status of MAFIO as a 
research-level model. However, application to Tulloch Burn still pro-
vided insight into how an agent-based approach has significant potential 
for identifying drivers of microbial water quality at scales relevant for 
management. 

Management of microbial water quality at the farm scale is always 
likely to have financial implications for the farmer (Oliver et al., 2007). 
Consequently, information aiding spatial targeting of cost-effective and 
efficient mitigation measures is desirable (c.f. Oliver et al., 2018; Vinten 
et al., 2017). The facility to interrogate the Domain type memory and 
Location memory attributes of exported FIO-agents in MAFIO permits 
insights into the transfer mechanisms and source areas contributing FIOs 
to streams, which may have significant value in this respect. For the 
Tulloch Burn, for example, it was revealed that whilst overland flow 
could cause spikes in the flux of exported FIO-agents during events, its 
capacity to transport FIO-agents to the stream in time and space was 
overall limited (Figs. 9–11). Consequently, seepage from areas of 
degraded soil was always the dominant transfer mechanism (Fig. 9d) 
and exported FIO-agents were sourced from locations highly proximal to 
the stream under all conditions (Figs. 10–11). As the skill of MAFIO in 
simulating observed E. coli dynamics at the outlet suggests these local-
ised mechanisms are dominant drivers of microbial water quality 
(Fig. 8a–b), an implication is that small-scale interventions (e.g. building 
bridges between fields separated by the stream or preventing livestock 
access to stream-proximal locations capable of generating overland 
flow) could result in significant improvements to microbial water 
quality without the need for larger-scale and more costly measures (e.g. 
reducing stocking densities or extensive use of buffer strips; Cuttle et al., 

Fig. 10. For the whole microbial observation period and based on the 30 
ensemble runs of MAFIO, maps showing the a) Median number and b) Range in 
numbers of exported FIO-agents directly deposited in the stream for each cell 
containing a channel, and pathways based on the c) Median number or d) 
Range in numbers of FIO-agents that passed through each grid cell in the course 
of being transported to the stream in overland flow or seepage. The scale re-
flects the log10-transformed median number/range in numbers and is common 
to all maps. Areas of white denote medians/ranges of 0. 
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2006). 
Quantitative microbial risk assessment (QMRA) can further assist in 

selection of mitigation measures by providing a basis for assessing how 
risks presented by faecal pathogens to human health can be reduced 
through management (Haas et al., 2014; Strachan et al., 2005). Usually, 
a dose-response model estimates the likelihood of an adverse health 
effect occurring based on an input dosage of pathogens (Haas et al., 
2014). Direct quantification of pathogens in water is not common, 
however, due to their lower occurrence with respect to FIOs and the 
costly methods necessary for their enumeration (Geldreich, 1996). 
Therefore, it may be necessary to estimate exposure based on the 
prevalence of pathogens in animals responsible for contaminating the 
medium humans come into contact with (c.f. Strachan et al., 2002). In 
this regard, MAFIO simulations attributing contributions of exported 
FIO-agents to different livestock types (Fig. 9e) could prove useful. 

Furthermore, the agent-based model structure could allow direct simu-
lation of pathogenic organisms alongside non-pathogenic FIOs, subject 
to sufficient data availability to inform parameterisations or rule sets 
associated with pathogenic FIO-agents (c.f. Hipsey et al., 2008). 

The ability to model processes stochastically in MAFIO may also be 
of value in a management context. In particular, this can enable greater 
representation of how both natural variability and uncertainty in 
simulated processes propagate to predictions of microbial water quality, 
which may be useful for decision making (c.f. Brouwer and De Blois, 
2008). Indeed, application of MAFIO to the Tulloch Burn highlighted 
how simulated E. coli loads may demonstrate considerable spread due to 
variability and uncertainty in how livestock use the landscape and, 
consequently, directly defecate in streams (c.f. Oliver et al., 2010). 
However, full realisation of this value would be contingent on the 
development of appropriate calibration methods for ABMs which 

Fig. 11. For the exemplar dry day and based on the 30 ensemble runs of MAFIO, maps showing the a) Median number and b) Range in numbers of exported FIO- 
agents directly deposited in the stream for each cell containing a channel, and pathways based on the e) Median number or f) Range in numbers of FIO-agents that 
passed through each grid cell in the course of being transported to the stream in overland flow or seepage. Equivalent maps for the wet day are shown in (c–d) and 
(g–h), respectively. The scale reflects the log10-transformed median number/range in numbers and is common to all maps. Areas of white denote medians/ranges 
of 0. 
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quantify how parameter and structural uncertainty also propagate to 
model outputs, as discussed earlier. 

A final important point relates to the data requirements of MAFIO 
and its consequent transferability. As previously highlighted, availabil-
ity of diverse observations corresponding to model outputs will benefit 
calibration/validation of the model and its associated hydrological 
environment simulator (c.f. Kelleher et al., 2017; Kuppel et al., 2018b). 
However, where such observations exist, it is not necessary that model 
inputs be derived from site-specific data such as those available in this 
study following intensive monitoring at the Tulloch Burn. For example, 
nationally-available datasets combined with simple assumptions 
regarding grazing practices could provide the spatial arrangement of 
fields within a catchment along with livestock counts that vary in space 
and time (e.g. Oliver et al., 2010, 2018). Furthermore, use of local 
datasets (e.g. regarding stream fencing as in Dymond et al., 2016) 
alongside one-off farm surveys or farmer interviews (Oliver et al., 2007, 
2009) could sufficiently characterise the spatial distributions of stream 
accessibility to livestock and areas of degraded soil. Other necessary 
catchment characteristics can be derived from widely-available data (e. 
g. elevation, soil types, etc.) integrated into a geographical information 
system. Finally, where site-specific data on FIO concentrations in faeces 
and soil are unavailable, estimates may be derived from literature values 
(e.g. Dorner et al., 2006; Hipsey et al., 2008; Whitehead et al., 2016). 
Consequently, it should be possible to apply MAFIO to less 
intensively-studied catchments. It is also important to emphasise that 
any hydrological model could be used to provide the hydrological 
environment for MAFIO as long as its consistency with catchment hy-
drological functioning can be robustly assessed. 

6. Conclusions 

This work provided a proof-of-concept application for MAFIO, an 
agent-based model designed to unravel the spatio-temporal dynamics of 
sources and transfer mechanisms contributing FIOs to streams at the 
sub-field scale. Performance in simulating observed E. coli dynamics in 
the Tulloch Burn catchment showed that the model has skill in capturing 
the transfer of FIOs from livestock to streams via the processes of direct 
deposition, overland flow and seepage from areas of degraded soil. This 
assessment was aided by EcH2O-iso, the hydrological environment 
simulator for MAFIO, identifying generation of overland flow close to 
the stream and dominance of groundwater in the catchment with some 
confidence following multi-criteria calibration to discharge and isotope 
data. However, uncertainty in the exact spatial extent of overland flow 
paths simulated by EcH2O-iso meant it was not always clear whether 
deficiencies in MAFIO performance reflected a hydrological or micro-
biological cause. This identified the need for a quantitative assessment 
of uncertainty propagation from EcH2O-iso to MAFIO to be the subject of 
future work. Nonetheless, under-prediction of observed E. coli loads in 
the upper catchment implied the need to consider “naturalised” or 
wildlife sources of FIOs in the model, and it was further possible to 
identify several avenues relating to issues of scale and calibration that 
could be explored to improve model performance. 

Despite the present status of MAFIO as a research-level model, this 
application revealed how the agent-based structure of the model 
allowed it to have significant potential for informing management. 
Interrogation of the attributes of FIO-agents exported from the catch-
ment could reveal insights into source areas, transfer mechanisms and 
livestock contributing FIOs to the stream, providing information that 
could inform implementation of efficient, cost-effective mitigation 
measures. Furthermore, the potential to model processes stochastically 
in MAFIO allowed the effects of natural variability and uncertainty in 
processes influencing microbial water quality to be characterised, which 
may have value in a decision support context. Whilst this proof-of- 
concept study identified possible refinements that could be made to 
MAFIO, once addressed, it is likely that the model could have substantial 
value in underpinning decision support frameworks aimed at mitigating 

impaired microbial water quality. 

Software and data availability 

The source code for MAFIO as used in this work is available via the 
University of Aberdeen PURE repository: https://doi.org/10.20392/66 
f74663-ece3-4a52-8bed-f0cf52d0831a. 

The source code for EcH2O-iso is available at: https://bitbucket. 
org/sylka/ech2o_iso/src/master_2.0/. 

The Tulloch Burn datasets used in this study are available from the 
lead author on request. 
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