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A B S T R A C T

Water resources provide multiple services, one of the most important the provision of drinking water, con-
ventionally treated before public consumption as potable supplies. With increasing pressures from land use and
climate change, there are advantages to be gained from considering raw water quality as a fundamental char-
acteristic of the natural resource, and to anticipate emerging risks within the catchments rather than relying on
treatment. This research proposes a large-scale, rapid risk screening of raw water quality based on catchment
sensitivity to pressures as prerequisite to a more strategic inclusion of emerging risks in water resource and
ecosystem management. Raw water quality observations from 154 surface water catchments in Scotland were
investigated to determine the national baseline and to identify current pressures and underlying drivers. Patterns
and spatial dependencies were investigated using principal component analysis, redundancy analysis, cluster
analysis, and regression trees. These statistical approaches highlight the interaction between intrinsic catchment
biophysical properties, land use and climate in characterising water quality risks and identify the focus for
prioritising catchment interventions and risk-mitigation in the future. The emphasis on raw water quality will
also support an ecosystem-based approach to increase catchment resilience, to ensure long-term supply of good
quality drinking water while simultaneously creating wider benefits for society and the environment.

1. Introduction

An essential use of our freshwater ecosystems is for drinking water
purposes, with concomitant requirements for water quality to maintain
public health (WHO, 2011). In developed countries, achieving statutory
requirements for drinking water has conventionally had a technolo-
gical, end-of-pipe focus on water treatment to manage and mitigate
risks to meet regulatory standards. However, mounting pressures on
water resources and associated challenges for treatment processes has
led to increased interest in more strategic approaches to risk assessment
and in particular to the role of targeted interventions that can maintain
or improve raw water quality within the catchment (watershed) units
that act as water sources (WWAP, 2018). This interest is based upon
enhanced awareness of the mutually-reinforcing outcomes that can be
gained for the environment, society and economy through healthy,
functioning, and resilient ecosystems, together with the notion of raw
water quality as being an inherent ‘public good’ that is associated with
multiple benefits through delivery of diverse ecosystem services in-
cluding provision of drinking water (Everard and McInnes, 2013;

Grizzetti et al., 2016; Keeler et al., 2012). Advantages of good raw
water quality for water suppliers accrue from reduced treatment costs,
reduced carbon emissions and enhanced reliability of source areas for
water provision, whilst for other beneficiaries, water quality has a di-
rect link with other goals, notably for biodiversity and amenity value of
freshwater ecosystems. Pioneering schemes have consequently been
developed through catchment-based partnerships to improve water
quality, combining drinking water supply, nature conservation, and
amenity agendas, with the aim of achieving not only an economically
favourable outcome, but also delivering wider benefits for the en-
vironment and society (Appleton, 2002; Morris and Holstead, 2013).

Important as they are, these pioneering schemes typically represent
opportunist developments originating in specific catchments due to
shared recognition of the need for action based upon known linkages
between water quality, habitat restoration and amenity value. This
shared recognition often occurs from identification of common pro-
blems following degradation of a resource (Margerum and Robinson,
2015). In this contribution, we present the merits of a more systemic
and strategic approach to risk assessment based upon large-scale
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characterisation of raw water quality, using this to explore a more
proactive policy and operational agenda for catchment source protec-
tion at national scale that includes both existing and emergent risks.
The strategic approach aims to improve awareness of spatial and tem-
poral dimensions of risk together with the role of resilient ecosystems in
mitigating that risk, and therefore to inform policy and planned inter-
ventions at a scale above that of opportunist local catchment schemes.
Interventions may therefore be designed in response to existing water
resource pressures (e.g. increased demand; land use intensification) but
also to anticipate and counteract additional emergent risks, notably due
to climate change.

At country-level, water resource planners develop strategic in-
itiatives to secure a safe and reliable water supply, including safe-
guarding raw water quality (Le Moigne et al., 1994). Risk assessment
for water quality is standard practice in many countries (Hrudey et al.,
2006), as informed by regular monitoring of resources and underpinned
by statutory regulation, but risk management is normally based upon
existing recognised hazards and consequent risks in specific catch-
ments, together with established procedures to react to detected
changes in risk levels. Risks can propagate from existing geochemical
mineralogical hazards associated with specific rocks and sediments, and
from the presence of soil organic particulate, biogeochemical, or mi-
crobiological contaminants (bacteria, protozoa etc.). In each case,
regulatory standards for drinking water define risk tolerance in terms of
safe concentrations of potential contaminants, as formalised both in-
ternationally (WHO, 2011) and through national policy. In addition,
raw water quality is an important constituent of other regulatory po-
licies, including for bathing water and aquatic biodiversity. Recognition
that multiple policy instruments can be in conflict when defined in
isolation has led to a shift towards finding more integrated solutions,
and in particular to the role of the Ecosystem Approach in providing a
more coherent strategy for sustainability goals (Brown and Everard,
2015). In the water sector, this has led to development of more holistic
policy frameworks which aim to integrate regulatory instruments
within a common structure, as exemplified by the EU Water Framework
Directive (Directive 2000/60/EC) which has defined objectives based
upon characterisation of good ecological and chemical status of water
bodies (Everard, 2011; Vlachopoulou et al., 2014).

Land use changes associated with intensification, and ongoing cli-
mate change, are increasing pressures on natural hydrological and
biogeochemical processes. Direct effects arise from modified soil
moisture levels and streamflows, erosion, increased carbon fluxes, de-
clining ecosystem productivity and ecosystem resilience, with indirect
negative impacts on pollutant loads and water quality expected to in-
crease in the future (Delpla et al., 2009). These drivers and pressures
will further challenge existing treatment infrastructure and purification
techniques, and lead to an increase in effort and costs for treating water
to meet standards (Ritson et al., 2014). Arguments, such as ‘the un-
iqueness of place’ (Beven, 2000), suggests that efforts to model water
quality risks for individual catchments will only have limited utility
without a broader analytical framework in which to contextualise re-
sults and derive general inferences needed to develop catchment
management plans within the framework of strategic policy goals for
water resources (Everard and McInnes, 2013). Larger-scale approaches
can infer specific water quality parameters based upon catchment
characteristics (Davies and Neal, 2004; Rothwell et al., 2010), aided by
use of statistical analysis to improve understanding of underlying dri-
vers (e.g. Selle et al., 2013; Shen et al., 2011; Shi et al., 2017). Chal-
lenges and advantages of finding catchment commonalities and typol-
ogies are increasingly recognised in hydrological sciences, highlighting
the need for large-scale approaches and pooling of datasets to help
discriminate and categorise complex cause-effect relationships occur-
ring in catchments in a non-stationary climate (e.g. Beven, 2016;
Kundzewicz, 2018; Wagener et al., 2007).

The combination of scale, complexity and changing drivers thus
identifies scope for developing a risk screening approach to catchment

characterisation at strategic level. Screening seeks to identify key
catchment properties and their spatial characteristics in relation to
water quality parameters, and hence those catchments that are at
higher risk in terms of loss of quality, both at present, and in the future
as dynamic catchment properties are modified. The underlying ratio-
nale is that this procedure can be a basis for catchment prioritization in
terms of: monitoring and research to understand processes in more
detail; mitigation and restoration measures that increase resilience;
stakeholder engagement to better co-ordinate anticipatory adaptation
strategies based upon a shared recognition of change.

The basis of risk screening is to investigate current impacts, as re-
corded through monitoring data, and their association with existing
pressures on water resources as well as catchment sensitivity to dif-
ferent types of risks. The current range of risk as exhibited by raw water
quality parameters can therefore be examined in relation to catchment
characteristics in order to characterise key risk relations and their
spatial and temporal dimensions. This strategic approach and identifi-
cation of vulnerable catchments then provides a baseline against which
additional stresses, notably from increased exposure to changing hy-
droclimate drivers (e.g. modified precipitation regime) or land use
change can be referenced and precautionary actions adopted to main-
tain or enhance raw water quality.

The present study applies this risk screening approach for drinking
water catchments in Scotland by analysing relationships between
catchment characteristics and observed raw water quality parameters.
Scotland provides an excellent case study because of its heterogenous
landscape, diverse water resource management approaches, and policy
recognition for improved risk-based approaches to help secure and
maximise multiple benefits in a changing world (Scottish Government,
2011; Water Resources (Scotland) Act 2013). Screening of drinking
water catchments therefore aims to identify those at greatest risk by
identifying commonalities in characteristics and response, and hence
key risk factors to be addressed, including response strategies that
augment both research and monitoring, and enhance ecosystem resi-
lience.

2. Methods

2.1. Study catchments

Across Scotland, 154 catchments were analysed as sources for re-
servoir, lake and river intakes used by the national public supplier,
Scottish Water. Each catchment was characterised in terms of natural
conditions, as well as anthropogenic pressures using public data sets
(Table S1). Characteristics were chosen as representing potential in-
fluences on water quality. Topography, described by proportions of
steep/gentle slopes or relief ratio (elevation difference per length of
catchment), influences water runoff speed and thus mobilisation of
particles. Bedrock geology as well as soil properties can influence mi-
neral concentration, pH and hydrological pathways. Land use and
management can be sources of contaminants or alter catchment hy-
drology. Temperature influences microbial activity and vegetation
growth which can impact water quality, whilst precipitation patterns
determine soil erosion, water quantity and relative dilution/con-
centration of pollutants, and induce seasonal catchment changes in
hydrological pathways.

The great majority of catchments are very small (median size
3.84 km2), with a few exceptions (9 catchments >100 km2, and
3>1000 km2). Mean elevation peaks at between 250–300m. Slopes
are predominantly moderate (between 4°–15°); however, some catch-
ments also have high proportions of steep slopes (above 15°), or gentle
slopes (below 4°). Most catchments are dominated by semi-natural
habitat, especially heathland, while extensive coniferous forest and
improved grassland also feature in several catchments. There are low
percentages of urban areas (maximum 2.15%), and low arable area
cover (only five catchments with >10%, maximum 40.26%).
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Scotland has a heterogeneous geology, but most catchments are
underlain by metamorphic and igneous lithologies. A smaller number
occur on sedimentary series (mainly sandstone), whilst fewer still fea-
ture calcareous strata and only one with 100% limestone, broadly
consistent with national coverage. Many catchments have a high per-
centage of peat soils (histosols) or those with a significant surface or-
ganic horizon (e.g. peaty gleysols), because of the common presence of
such soils in the uplands, meaning high proportions of soil organic
carbon.

Mean temperatures and total precipitation reflect the oceanic tem-
perate climate of Scotland dominated by Atlantic weather systems.
There is a pronounced west-east gradient in total rainfall with catch-
ments in the west mainly experiencing higher rainfall than catchments
in the east, also reflecting additional orographic influences.

2.2. Water quality data

Data regarding eight water quality parameters routinely monitored
in accordance with regulatory requirements (aluminium, colour, pH,
iron, manganese, presumptive coliforms, presumptive E. coli, and tur-
bidity) were included in the analysis, provided by Scottish Water for
years 2011−2016. Sampling regimes vary per catchment with para-
meters being sampled from every three months to every week according
to the assumed level of risk, resulting in a minimum of 18 samples from
one catchment for the least sampled parameters (pH and bacteria) up to
a maximum of 238 samples from catchments on higher frequency
sampling for some parameters (colour, iron, manganese, turbidity).
Average sample numbers were 93 (aluminium), 99 (colour, turbidity),
100 (iron, manganese), 39 (pH) and 38 (coliform, E. coli) per catch-
ment.

2.3. Data analysis

Four statistical approaches were applied in combination with the
aim of inferring key relationships within this large multivariate dataset:
principal component analysis (PCA), cluster analysis, redundancy ana-
lysis (RDA), and regression-tree type analysis. Consistent with the risk
screening rationale, the analysis used these techniques in an ex-
ploratory mode to help infer key data relationships and their inter-
pretation in terms of causative risk factors.

PCA is a widely used approach to analyse water quality variability
(Li et al., 2013; Shen et al., 2011) and allowed to examine both
variability in water quality between catchments and associative pat-
terns in the multivariate data. It determined optimal linear combina-
tions (principal components, PCs) of the water quality parameters that
explain most data variability. PCs often reflect key processes that are
not directly observable in the original data (Selle et al., 2013). In-
formation about catchment characteristics was superimposed to the
PCA solution as supplementary variables. This aided an understanding
of the primary associations between catchment characteristics and
quality parameters allowing initial insights into prospective relation-
ships that define catchment sensitivity.

RDA is a multivariate statistical technique which combines linear
regression and PCA to examine the relationships between two multi-
variate data sets, explicitly assuming that one corresponds to response
variables and the other to explanatory variables. This method has found
varied applications in water quality research (e.g. Ding et al., 2016; Shi
et al., 2017). Here, it was used to simultaneously examine the influence
of a set of catchment characteristics on water quality parameters, so
that it helped to summarise the variability in the water quality variables
that can be explained by selected catchment characteristics.

Cluster analysis was employed to identify groups of catchments
showing homogenous profiles of water quality (Shen et al., 2011; Singh
et al., 2004). Analysing clusters at national level helped to interpret
water quality scale issues including exploration of geographic patterns
of catchment sensitivity associated with different risk factors.

Finally, multi-target predictive clustering trees (MTPCTs; Struyf
et al., 2011), were fitted to further test associations between individual
water quality variables and catchment characteristics. Advantages of
tree-based regression analysis include being non-parametric models
allowing recursive data partitioning which is well-suited to deal with
complex non-linear relationships and high-order interactions, is gen-
erally less sensitive to outliers, and encapsulates results in an intuitive
and easy to interpret hierarchical structure to aid decision-making
(Breiman et al., 1984). They are especially suitable for analysing pat-
terns in large noisy datasets (Atkins et al., 2007). MTPCTs generalise
ordinary regression trees by estimating expected values for more than
one variable at a time and have been shown to be effective for identi-
fying important parameters from diverse attributes (Demšar et al.,
2006). MTPCT allowed to jointly consider average concentrations (i.e.
catchment medians) as well as extremes (i.e. 95th percentiles), produ-
cing an estimated value for each depending on catchment character-
istics as explanatory variables.

Statistical data analyses and graphical representations were under-
taken in R v3.4 (R Core Team, 2018). Spearman’s rank correlations tests
provided a robust method suitable for non-normally distributed data, to
initially investigate individual relationships between catchment med-
ians. Water quality sample data were then log transformed to normalise
distributions with catchment medians and 95th percentiles used in
subsequent analyses. Medians summarised average water quality values
per catchment as input for PCA. Catchment characteristics were pro-
jected onto the biplot space spanned by the first two PCs to aid inter-
pretation of water quality relationships. Their biplot coordinates were
derived from correlation with the PCs (Graffelman and Aluja-Banet,
2003). During the RDA, non-significant catchment characteristics were
removed from the model through backward elimination, and two fur-
ther variables (steep slope and gentle slope) were removed manually to
reduce collinearity (topography being represented as relief ratio).
Variance inflation factors (VIF) were derived to assess multicollinearity.
For the cluster analysis, the partitioning around medoids (PAM;
Kaufman and Rousseeuw, 1990) clustering algorithm was used with the
standardized (z-transformed) catchment medians, and their dissim-
ilarity measured using Euclidean distances. PAM is a partitional clus-
tering technique, similar to k-means algorithm, but using actual data
points as cluster centres, which minimises influence of outlying ob-
servations. Clustering structure quality was assessed using the average
silhouette width measure (Kodinariya and Makwana, 2013) with
number (k) of clusters determined through best silhouette width.
Overall differences between clusters were tested for statistical sig-
nificance using the Kruskal-Wallis test. Pairwise differences between
clusters were tested using the Wilcoxon test. The software package Clus
(Struyf et al., 2011) was used to produce eight MTPCTs with their
performance assessed using root mean square error (RMSE) and R2

values from training and testing using 10-fold cross-validation.

3. Results

3.1. Statistical summary of water quality parameters

Summary statistics of catchment water quality data revealed strong
skewness (Table S2), with most of the parameters falling within the
lower concentration range and a few branching up to very high con-
centrations; apart from pH which is log-scale. Most catchments had
source concentrations below consumer drinking water standards for
aluminium, iron, manganese, and turbidity (0.2, 0.2, and 0.05mg/l and
4 NTU respectively (The Public Water Supplies (Scotland) Regulations
2014)). Most catchments had colour concentrations above the 20mg/l
Pt/Co drinking water standard, showing a widespread need for colour
treatment in Scotland. For pH, catchments falling outside the required
range (6.5–9.5) were more acidic, with values down to 5.5. Coliform
bacteria were usually present in drinking water, making disinfection a
necessary step in every treatment works.
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Spearman’s correlations indicated relatively strong (r> 0.6)
monotonic relationships between iron and colour, iron and manganese,
iron and turbidity, manganese and turbidity, and coliform and E. coli,
and moderate (r> 0.4) monotonic relationships between aluminium
and colour, aluminium and iron, aluminium and manganese, alumi-
nium and turbidity, colour and manganese, and colour and turbidity.

3.2. PCA

The first three PCs explained 80% data variance (46% PC1, 20%
PC2, and 14% PC3). The first two PCs’ biplot (Fig. 1) revealed most
catchments are relatively evenly scattered around the origin. PC1 was
most associated with levels of turbidity, metals and colour; PC2 with
pH, coliform and E. coli (Table S3). Catchments located towards the
upper part of Fig. 1 were associated with increasing values of coliform
and E. coli, and higher proportions of improved grassland, arable and
urban cover, whereas those placed more toward the right-hand side
presented higher values of metals, colour and turbidity, associated with
reduced precipitation, increased livestock densities, and gentler reliefs.
Toward the lower right corner, catchments were mostly characterised
by increasing values in colour and decreasing pH, correlated with
topsoil organic carbon content.

3.3. RDA

Through elimination of non-significant variables and collinearity
analysis, a reduced set of catchment characteristics (relief ratio,
Baseflow Index, topsoil organic carbon content, improved grassland,
arable, and urban land cover, cattle and sheep density, and precipita-
tion days >10mm) was included in the RDA model as constraining
variables. VIFs ranged from 1.3 to 2.3, hence collinearity was not
considered to be a confounding factor (threshold value 10: Alin, 2010)).
The first two RDA axes constrained 53% and 32% respectively of total
variance of water quality parameters, which corresponded to 17% and
10% of the overall variance.

The RDA triplot (Fig. 2) showed all water quality variables loaded
positively the first RDA axis, although colour was negligible. Improved
grassland, arable and urban cover, sheep and cattle density, and BFI
also contributed positively to RDA1, indicating increases in these
variables matched increased concentrations in bacteria, turbidity and
metal parameters, whilst a negative relationship was shown for relief
ratio, soil organic carbon and precipitation. For RDA2, colour, iron and
manganese were strongly negatively associated, while pH was strongly
positively associated, meaning catchments with higher concentrations
in colour, iron and manganese were usually more acidic. Average
topsoil organic carbon content was strongly negatively associated with

RDA2 whilst relief ration was positively associated, confirming colour
problems as most severe on organic soils and gentler reliefs. While
agricultural and urban land uses, to a lesser extent, associated positively
with RD2, sheep and cattle density corresponded negatively with these
two variables, showing them to be good candidate explanatory factors
for colour, iron, manganese and turbidity (Table S4).

3.4. Cluster analysis

Using catchment medians for PAM-based clustering produced five
clusters with an overall weak clustering structure (average silhouette
width 0.21), and with unequal cluster sizes (63, 40, 30, 16, 5 in clusters
1–5 respectively). Water quality parameters (Fig. 3) were overall sta-
tistically significantly different between clusters (p< .001). There were
also significant (p< .001) differences between catchment character-
istics per cluster (Fig. 3), notably in topography (relief ratio), pre-
cipitation, topsoil organic carbon content, cattle density, and arable and
improved grassland cover.

Fig. 1. PCA biplot: catchment water quality parameters (black rays), catchment characteristics as supplementary variables (grey dashed rays), and individual
catchments (points).

Fig. 2. RDA triplot: water quality parameters (black), catchment characteristics
as constraints (grey rays), and individual catchments (points). IG - Improved
grassland.
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Examining the geographic distribution (Fig. 4), cluster 2 occurred
predominantly in the Northwest, cluster 3 mainly along the West coast,
cluster 4 in the East, in the South and on Orkney, and cluster 5 was
restricted to the Northeast. This broadly corresponds to a basic dis-
tinction that can be made between catchments in the west of Scotland,
mainly characterised by steeper slopes, impermeable bedrock, high
precipitation, and dominant semi-natural land cover; and lowland areas
mainly in the east and south with gentler slopes, less precipitation and
land uses that include more intensive agriculture. However, there were
also locations where catchments in different cluster groups were spa-
tially adjacent, which suggests local-scale factors add further variability
of catchment behaviour.

3.5. Regression tree modelling

MTPCTs showed differences in RSME and R2 values between
training and test sets (Table 1), which indicates overfitting to the
training set, and their purely predictive capability was low. However,
the aim of this study was to understand key explanatory factors and the
results of the models are useful to explore the relationships between
water quality variables and catchment characteristics.

The MTPCT for aluminium featured cattle density and coniferous
forest cover as separators, with concentrations being higher where
cattle density is higher or coniferous forest covers more than half of the
catchment. Some catchments were separated showing especially larger
ranges of concentrations where mean annual temperature or pre-
cipitation is lower. The MTPCT for colour indicated that catchments
with higher soil organic carbon content would yield higher colour

concentrations. The same could be seen for iron, with catchments
showing higher concentrations where topsoil organic carbon content is
higher, or with higher cattle density. The MTPCT for manganese only
separated two catchments with higher concentrations containing the
highest sheep densities. PH values were highest in catchments with
more than 25% improved grassland, and low where soil organic carbon
is higher, or baseflow index lower. The turbidity model showed highest
values for catchments with high improved grassland cover, or high in
sandstone bedrock. Turbidity values were also higher for catchments
with cattle or sheep, or if soils have a higher surface runoff ratio.
Coliform and E. coliMTPCTs separated two catchments with urban area
cover and highest concentrations first. The E. coli tree then also iden-
tified catchments with septic tanks as having higher concentrations.

4. Discussion

4.1. Water quality, catchment variability and risk factors

Drinking water catchments analysed reflected the variety of en-
vironmental conditions found across Scotland. Many showed similarity
in baseline raw water quality characteristics with predominantly low
concentrations of aluminium, iron, manganese, and turbidity, although
there was a wide variability in pH.

In Scotland, high concentrations in aluminium, iron, manganese and
dissolved organic carbon (DOC) are usually associated with acidic pH
and organic, poorly drained peat soils, as solubility increases at low pH
and under anaerobic conditions (Abesser et al., 2006). The colour and
high topsoil organic carbon relationship was a pattern that emerged in

Fig. 3. Boxplots of water quality parameters and catchment characteristics per cluster.

C. Vorstius, et al. Environmental Science and Policy 100 (2019) 84–93

88



all methods, especially in the RDA where the second RDA axis showed
that colour, as well as iron and manganese, related to high average of
topsoil organic content, low pH and gentler reliefs. Therefore, more
acidic, peaty upland catchments prone to water-logged conditions can
generally be identified as candidate catchments for higher colour risk.
Cluster analysis suggested that there may also be local factors leading to
varying concentrations in colour and metal parameters, potentially due
to catchment geology (which would not be sufficiently represented
through percentage of limestone and sandstone cover) or a greater
catchment extent of degraded or eroded peat. The RDA identified in-
fluence of cattle and sheep density, which supports a possible

relationship to peat degradation.
Similarly, land use variables clearly showed a positive association

with the first RDA axis, which mainly related to metal variables
alongside turbidity and E. coli, suggesting a relationship with more
intensive forms of land use also for these parameters. Cattle and sheep
densities appeared in the MTPCTs for aluminium, iron, manganese, and
turbidity, maybe pointing towards erosion related processes. Higher
SPR of the soil also associated to higher turbidity, which can occur
when rainfall quickly runs off the surface, picking up particles from
bare and disturbed ground. The coniferous forest cover in the alumi-
nium MTPCT could point towards similar processes of disturbance

Fig. 4. Spatial distribution of catchment clusters.
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through forestry, or be related to acidification of soils. Interestingly,
coniferous forest cover was not picked up as significant in the other
methods, which could indicate a varying influence of forestry in com-
bination with other characteristics and management.

Bacteria concentrations correlated well with land use, especially
improved grassland, arable and urban areas. Perhaps surprisingly, im-
proved grassland or livestock densities were not stronger explanatory
variables for these parameters in the MTPCTs. Neill et al. (2018) found
that especially in small catchments, the extent of arable or pasture land

was not a good predictor for E. coli concentration, due to greater in-
fluence of point sources over diffuse sources. Septic tanks as point
sources were included in the E. coli MTPCT, and the number of septic
tanks also correlated with PC2, but there are only few catchments with
septic tanks, and they were not included as a significant variable in the
RDA. Catchments with urban cover and septic tanks are usually the
ones that have higher percentages of agriculture, so there may be an
overlapping effect of direct influences from arable agriculture and li-
vestock, and other factors associated with catchments more suitable for

Table 1
MTPCTs per water quality parameter. Predictors used were relief ratio, percentage of limestone bedrock and
of sandstone bedrock, average value for topsoil organic carbon content (TOC), average Baseflow Index
(BFI), average Surface Percentage Runoff (SPR), percentage coniferous forest, deciduous forest, arable,
improved grassland, urban and heathland area cover, average density per parish 2013–2017 of cattle and of
sheep, number of septic tanks in the catchment, mean annual temperature, and mean monthly rainfall. ‘yes’
and ‘no’ refer to the condition above, leading to a new condition or the predicted median and 95th percentile
values in [], followed by the number of catchments falling within this prediction.

(continued on next page)
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these land uses.

4.2. Implications for risk management

Some areas of Scotland, especially the transition zones between
uplands and lowlands, are anticipated to become more suitable for
agricultural intensification through climate change because constraints
are reduced in a warmer climate (Brown et al., 2010). Evidence sug-
gests that recent climate warming has already improved agricultural
land capability, and in combination with socioeconomic factors this
may be associated with recent changes in land use, such as shifts to-
wards autumn-sown rather than spring-sown crops or increased out-
door overwintering of livestock (Brown and Castellazzi, 2014). Our
analysis highlights risks especially regarding bacterial contamination
from agriculture or associated factors, so the next step in risk screening
for water quality will be to use the catchments identified in this large-
scale analysis to further investigate the causes for higher levels of
bacteria. Risk screening is therefore being used to identify both vul-
nerable and potentially vulnerable catchments including those where
forward projections suggest a higher likelihood of further land use
change that may impact water quality.

Colour concentrations tend to be above the potable drinking water
standard in Scottish water sources. There are indications that DOC re-
lease from Scottish peatlands will rise further (Evans et al., 2005; Ritson
et al., 2014; Sawicka et al., 2017), which may be exacerbated by a
changing climate, linking projected heavier rainfall (ASC, 2016; Burt
and Howden, 2013) with increased erosion and runoff rates (Li et al.,
2016). While generally confirming that catchments with acidic, highly
organic soils are high risk for colour production, more specific risk
factors are difficult to disentangle looking at percentiles alone. Further
work to explore time and event-based relationships will be needed to
allow further conclusions on which conditions (such as topography,
peat condition, and land uses) further contribute to catchment vulner-
ability in terms of colour production.

Concentrations for all parameters investigated suggested an inverse

relationship with catchment precipitation values, indicating an im-
portant relationship with water quantity, and that risks appear to be
greater for catchments that receive less precipitation, potentially due to
a reduced dilution of contaminants. This needs to be further explored,
especially because its potential importance is emphasised by climate
change projections for an increased frequency of drier summers in the
UK (Lowe et al., 2018).

4.3. Role of risk-screening

A foundation for strategic-level risk assessment was produced by
combining different statistical approaches which provided com-
plementary information. PCA showed overall trends and controls in the
water quality data and allowed first identification of catchments with
distinct water quality profiles. While many catchments showed elevated
concentrations for all or a suite of parameters in the raw data, the PCA
clearly showed a decoupling of parameters or groups of parameters
(microbial, colour, and metals and turbidity). RDA helped to establish
explanatory roles of catchment characteristics. The cluster analysis used
the water quality patterns to separate catchments with different pro-
files. A spatial perspective was added which pointed towards influences
acting on a national scale, as well as to the potential importance of local
conditions that govern water quality. Lastly, the MTPCTs identified the
most important characteristics associated with individual water quality
parameters and facilitated neater interpretation of the influence of local
variations.

Considering the variety and complexity of catchments, and the
broad-scale analysis, it is unsurprising that some relationships between
raw water quality and catchment characteristics remain unresolved.
Summarising on medians, rather than investigating all sampling points
per catchment individually, might mask relevant data variability within
a catchment and fail to capture differences between catchments for
example in response to extreme events. The different sampling regimes
also mean that in catchments with lower sampling frequencies, ex-
tremes are likely missed, while in catchments with higher frequency

Table 1 (continued)
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sampling, a slight bias to high values may exist from reactive sampling
following high concentrations, therefore exaggerating differences in
baseline concentrations, although the use of medians as a robust mea-
sure helped to minimise the potential bias. Catchments are pre-
dominantly small, so relating catchment characteristics to water quality
becomes more challenging as correlations seem to become weaker at
this scale, and there is high spatial and temporal diversity in headwater
streams (Abbott et al., 2017). For some catchment characteristics (e.g.
geology and geochemistry) small catchment size identifies a need for
high-resolution data beyond that available through national-scale sur-
veys. Responses vary depending on local factors: reservoirs and lakes
for example will buffer high concentrations following extreme events,
so similar catchment responses may show a different outcome in the
observed water quality parameter depending on water body type. Fi-
nally, catchment profiles could look similar but with different spatial
land cover distributions or other local properties relative to the water
sample site, and consequently show very different water quality out-
comes to similar pressures. A more detailed exploration of catchment
conditions together with a stronger focus on catchment responses to
extreme events is necessary to understand what makes catchments
vulnerable to pressures, which allows a better understanding of how
catchment will react to changes in these pressures. The next stage in
risk screening should therefore be to investigate confounding effects
and improve the quality of data for those priority catchments identified
at higher risk.

Identification of high-risk catchments also acts to prioritise the need
for co-ordinated intervention. Risk screening results can play an im-
portant role in facilitating awareness and deliberation of how best to co-
ordinate actions to deliver common objectives on water quality out-
comes. The crucial role of land use and land management has been
highlighted in the present study in terms of increased risk of resource
degradation. For water suppliers, it can identify the need to enhance
collaboration with land managers and resource users, and the need to
adopt more coherent sampling to support similar analysis and simplify
pooling of data. Risk screening results can help further promote the key
role of raw water quality in indicating ecosystem health and resilience.
Good management practice linking land use and water sectors is likely
to become increasingly important as climate change brings further
shifts in extreme rainfall events that transfer pollutants to water bodies
and low flow episodes that increase pollutant concentrations beyond
safe limits (Brown, 2018).

5. Conclusion

A strategic risk-screening approach to raw water quality that com-
bined four different statistical analyses has been developed and applied
in Scotland. Screening has identified dominant risk factors and higher-
risk catchments that act as priorities for more detailed analysis and
improved sampling. Risks are particularly highlighted for colour and
bacteriological quality parameters, strongly linked to management of
organic soils and agriculture, although other interacting risk factors
confound a simple interpretation. In both cases, risks are likely to be
further modified by land use change and climate change, which iden-
tifies the need for targeted and co-ordinated interventions to better
manage risk.
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